

www.ti.com.cn ZHCS611 – DECEMBER 2011

具有双倍速率低压差分信号(DDR LVDS)和 CMOS 输出的14 位,65每秒百万次采样(MSPS)模数转换器(ADC)

查询样品: ADS6142-HT

特性

- 最大采样率
- 无丢码的14位分辨率
- 用于信噪比(SNR)/无杂散动态范围(SFDR)权衡的3.5dB粗调增益和最高6dB可编程微调增益
- 并行CMOS和双倍速率(DDR) LVDS输出选项
- 支持正弦,低压COMS(LVCOMS),低电压正射极 耦合逻辑(LVPECL),LVDS时钟输入,和时钟振幅 低至400mV_{PP}
- 时钟占空比稳定器
- 支持外部基准的内部基准
- 无需为基准提供外部退偶装置
- 可编程输出时钟位置和数据捕捉的驱动强度
- 3.3V模拟和1数字电源

应用范围

- 潜孔钻孔
- 高温环境
- 无线通信基础设施
- 软件定义无线电
- 功率放大器线性化

802.16d/e

- 测试和测量仪器
- 高清音频
- 医疗成像
- 雷达系统

支持极端温度环境下的应用

- 受控基线
- 一个组装/测试场所
- 一个制造场所
- 可在极端温度范围内(-40°C/210°C)工作(1)
- 延长的产品使用寿命周期
- 延长产品的变更通知周期
- 产品可追溯性
- 德州仪器高温产品利用高度优化的硅(芯片)解决方案,此解决方案对设计和制造工艺进行了提升以在拓展的温度范围内大大地提高性能。所有器件可在最大额定温度下连续运行1000小时。

ADS6142-HT

(1) 可定制温度范围

说明

ADS6142是一款高性能和低功率耗散14位模拟/数字(A/D)转换器,此转换器采样频率为65每秒百万次采样(MSPS)。 即使在高输入频率下,一个内部高带宽采样和保持以及一个低抖动时钟缓冲器可帮助实现高信噪比(SNR)和宽无杂散动态范围(SFDR)。

ADS6142特有粗调和微调增益选项,在较低全幅模拟输入范围内,可改进SFDR性能。

此数字输出是并行CMOS或者是DDR(双倍速率)LVDS。 有几个特性可以使数据捕捉更加容易 - 输出时钟位置的控制和输出缓冲器驱动能力,LVDS电流,和内部终止可编程性。

输出接口类型,增益,和其它功能可使用**3**线制串口进行编程。或者,可使用专用并行引脚对一些功能进行配置,因此此器件驱动到所需状态。

ADS6142在包含内部基准的同时去除了传统的基准引脚和相关的外部退偶装置。 也支持外部基准模式。

ADS6142可在极端温度范围(-40°C至 210°C)内工作。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ZHCS611 – DECEMBER 2011 www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

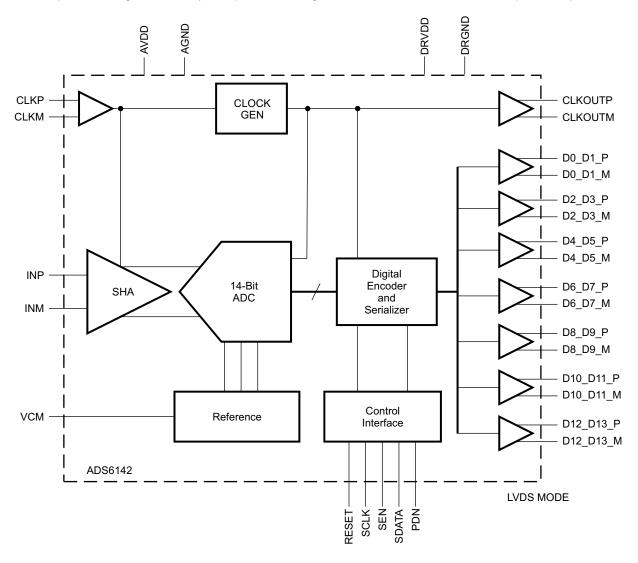
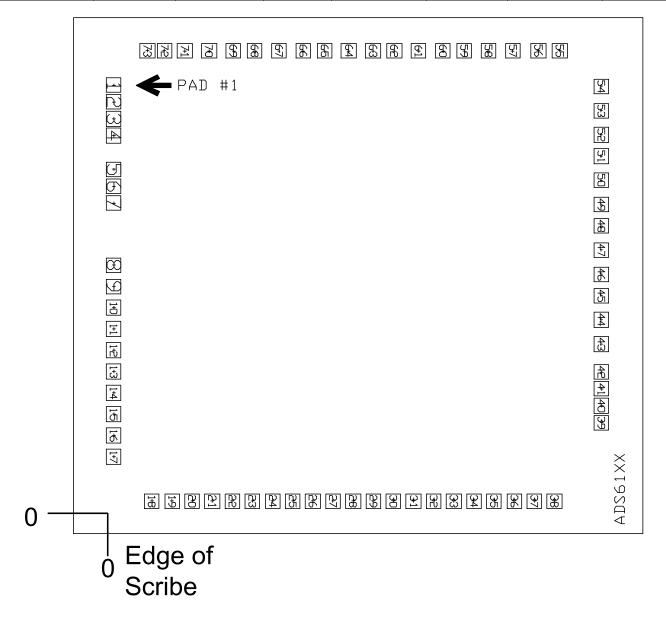


Table 1. ORDERING INFORMATION(1)

TA	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 210°C	KGD (bare die)	ADS6142SKGD1	NA


⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

BARE DIE INFORMATION

DIE SIZE	DIE PAD SIZE	DIE PAD COORDINATES	DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION	BOND PAD THICKNESS
2715 x 2460 µm 96.85 x 106.89 mils	70 x 70 μm	See Table 2	11 mils	Silicon with backgrind	DRVSS	Ti/Al-Cu/TiN	1100 nm

Table 2. BOND PAD COORDINATES

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX
DRVDD	1	80.92	2065	150.92	2135
N/C	2	80.92	1984.5	150.92	2054.5
N/C	3	80.92	1904	150.92	1974
RESET	4	80.92	1823.5	150.92	1893.5
SCLK	5	80.92	1662.5	150.92	1732.5
SDATA	6	80.92	1582	150.92	1652
SEN	7	80.92	1501.5	150.92	1571.5
N/C	8	80.92	1206.1	150.92	1276.1
N/C	9	80.92	1104.6	150.92	1174.6
AGND	10	80.92	1003.1	150.92	1073.1
AGND	11	80.92	901.6	150.92	971.6
AGND	12	80.92	800.1	150.92	870.1
CLKP	13	80.92	698.6	150.92	768.6
CLKP	14	80.92	597.1	150.92	667.1
CLKM	15	80.92	495.6	150.92	565.6
CLKM	16	80.92	394.1	150.92	464.1
N/C	17	80.92	292.6	150.92	362.6
N/C	18	262.5	80.92	332.5	150.92
AGND	19	358.365	80.92	428.365	150.92
AGND	20	454.23	80.92	524.23	150.92
N/C	21	550.095	80.92	620.095	150.92
INP INP	22	645.96	80.92	715.96	150.92
INM	24	741.825	80.92 80.92	811.825	150.92
INM	25	837.69		907.69	150.92
		933.555	80.92	1003.555	150.92
N/C	26	1029.42	80.92	1099.42	150.92
AGND	27	1125.285	80.92	1195.285	150.92
AGND	28	1221.15	80.92	1291.15	150.92
N/C	29	1317.015	80.92	1387.015	150.92
AVDD	30	1412.88	80.92	1482.88	150.92
AVDD	31	1508.745	80.92	1578.745	150.92
VCM	32	1604.61	80.92	1674.61	150.92
VCM	33	1700.475	80.92	1770.475	150.92
N/C	34	1796.34	80.92	1866.34	150.92
N/C	35	1892.205	80.92	1962.205	150.92
N/C	36	1988.07	80.92	2058.07	150.92
AVDD	37	2083.935	80.92	2153.935	150.92
PDN	38	2179.8	80.92	2249.8	150.92
N/C	39	2404.08	455	2474.08	525
N/C	40	2404.08	535.5	2474.08	605.5
N/C	41	2404.08	616	2474.08	686
N/C	42	2404.08	696.5	2474.08	766.5
D0	43	2402.925	829.71	2472.925	899.71
N/C	44	2402.925	945.28	2472.925	1015.28
D1	45	2402.925	1060.85	2472.925	1130.85
D2	46	2402.925	1162.21	2472.925	1232.21
SUBST	47	2402.925	1277.78	2472.925	1347.78

Table 2. BOND PAD COORDINATES (continued)

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX
D3	48	2402.925	1393.35	2472.925	1463.35
D4	49	2402.925	1494.71	2472.925	1564.71
SUBST	50	2402.925	1610.28	2472.925	1680.28
D5	51	2402.925	1725.85	2472.925	1795.85
D6	52	2402.925	1827.21	2472.925	1897.21
N/C	53	2402.925	1942.78	2472.925	2012.78
D7	54	2402.925	2058.35	2472.925	2128.35
SUBST	55	2205	2229.08	2275	2299.08
SUBST	56	2103.5	2229.08	2173.5	2299.08
OVR	57	1980.79	2227.925	2050.79	2297.925
SUBST	58	1865.22	2227.925	1935.22	2297.925
CLKOUT	59	1749.65	2227.925	1819.65	2297.925
N/C	60	1648.29	2227.925	1718.29	2297.925
SUBST	61	1532.72	2227.925	1602.72	2297.925
N/C	62	1417.15	2227.925	1487.15	2297.925
D8	63	1315.79	2227.925	1385.79	2297.925
SUBST	64	1200.22	2227.925	1270.22	2297.925
D9	65	1084.65	2227.925	1154.65	2297.925
D10	66	983.29	2227.925	1053.29	2297.925
SUBST	67	867.72	2227.925	937.72	2297.925
D11	68	752.15	2227.925	822.15	2297.925
D12	69	650.79	2227.925	720.79	2297.925
SUBST	70	535.22	2227.925	605.22	2297.925
D13	71	419.65	2227.925	489.65	2297.925
SUBST	72	322	2229.08	392	2299.08
DRVDD	73	241.5	2229.08	311.5	2299.08
Substrate should be connected to DRVSS					

TEXAS INSTRUMENTS

ABSOLUTE MAXIMUM RATINGS(1)

		VALUE	UNIT
V	Supply voltage range, AVDD	-0.3 to 3.9	V
VI	Supply voltage range, DRVDD	-0.3 to 3.9	V
	Voltage between AGND and DRGND	-0.3 to 0.3	V
	Voltage between AVDD to DRVDD	-0.3 to 3.3	V
	Voltage applied to VCM pin (in external reference mode)	-0.3 to 2	V
	Voltage applied to analog input pins, INP and INM	-0.3 to minimum (3.6, AVDD + 0.3)	V
	Voltage applied to analog input pins, CLKP and CLKM	-0.3 to (AVDD + 0.3)	V
TJ	Operating junction temperature range	-40 to 210	°C
T _{stg}	Storage temperature range	-65 to 210	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			Tj = -	-40°C to 125°	С		Tj = 210°C		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
SUPPLI	ES	•							
AVDD	Analog supply voltage		3	3.3	3.6	3	3.3	3.6	V
DRVDD	Output buffer supply	CMOS Interface	1.65	1.8 to 3.3	3.6	1.65	1.8 to 3.3	3.6	V
טעאט	voltage	LVDS Interface	3	3.3	3.6	3	3.3	3.6	V
ANALO	G INPUTS								
	Differential input voltage	range		2			2		V_{pp}
V _{IC}	Input common-mode vol	Itage		1.5 ± 0.1			1.5 ± 0.1		V
	Voltage applied on VCM in external reference mode		1.45	1.5	1.55	1.45	1.5	1.55	V
CLOCK	INPUT								
	Input clock sample rate,	F _S	1		65	1		65	MSPS
		Sine wave, ac-coupled	0.4	1.5		0.4	1.5		
	Input clock amplitude differential	LVPECL, ac-coupled		± 0.8			± 0.8		\/
	(V _{CLKP} – V _{CLKM})	LVDS, ac-coupled		± 0.35			± 0.35		V_{pp}
	(OZIMI)	LVCMOS, ac-coupled		3.3			3.3		
	Input Clock duty cycle		35%	50%	65%	35%	50%	65%	
DIGITAL	L OUTPUTS				·				
		For C _{LOAD} ≤ 5 pF and DRVDD ≥ 2.2 V		DEFAULT strength			DEFAULT strength		
	Output buffer drive strength (1)	For C _{LOAD} > 5 pF and DRVDD ≥ 2.2 V		MAXIMUM strength		MAXIMUM strength			
		For DRVDD < 2.2 V		MAXIMUM strength			MAXIMUM strength		
		CMOS Interface, maximum buffer strength		10			10		
Maximum external load capacitance from each output pin to DRGND		LVDS Interface, without internal termination	5			5			pF
		LVDS Interface, with internal termination		10			10		
R _{LOAD}	Differential load resistan LVDS output pairs	ce (external) between the		100		100			Ω
T _J	Operating junction temp	erature range	-40		125			210	°C

⁽¹⁾ See Output Buffer Strength Programmability in the application section.

ELECTRICAL CHARACTERISTICS

Typical values are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.

	PARAMETER	Tj = -	40°C to 125	°C	Tj	= 210°C		UNIT
	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	UNII
RESOLUTIO	ON .		14			14		Bits
ANALOG IN	PUT	,						
	Differential input voltage range		2			2		V_{PP}
	Differential input resistance (dc), see Figure 37		> 1			> 1		МΩ
	Differential input capacitance, see Figure 38		7			7		pF
	Analog input bandwidth		450			300		MHz
	Analog input common-mode current (per input pin of each ADC)		92			95		μΑ
REFERENCI	E VOLTAGES							
VREFB	Internal reference bottom voltage		1			1		V
VREFT	Internal reference top voltage		2			2		V
ΔV_{REF}	Internal reference error (VREFT–VREFB)	-30	±5	30	-55	±5	55	mV
V _{CM}	Common-mode output voltage 1.5 1.5		1.5		V			
V _{CM} Output current capability		·	4			4		mA
DC ACCURA	ACY	·					'	
	No missing codes		Specified			Specifi	ed	
Eo	Offset error	-11	±2	11	-13	±10	13	mV
	Offset error temperature coefficient	·	0.04			0.06		mV/°C
	There are two sources of gain error – internal reference in	naccuracy ar	nd channel g	ain error			,	
E _{GREF}	Gain error due to internal reference inaccuracy alone, ($\Delta V_{REF}/2$) %	-1	0.6	1	-1	0.65	1	% FS
E _{GCHAN}	Gain error of channel alone ⁽¹⁾	,	±0.3			±0.3		% FS
	Channel gain error temperature coefficient	·	0.005					Δ%/°C
DNL	Differential nonlinearity	-0.95	0.5	2	-0.99	±0.5	2.5	LSB
INL	Integral nonlinearity	-10	±2	10	-18	±6	18	LSB
POWER SU	PPLY							
I _{AVDD}	Analog supply current	·	0.75			0.76		mA
I _{DRVDD}	Digital supply current, CMOS interface, DRVDD = 1.8 V, 4 No load capacitance, F_{in} = 2 MHz $^{(2)}$		4		mA			
DRVDD	Digital supply current, LVDS interface, DRVDD = 3.3 V, with 100-Ω external termination		21			48		mA
	Total power, CMOS , DRVDD = $3.3 \text{ V}^{(3)}$		418	450		422	500	mW
	Global power down		30	60		30	70	mW

⁽¹⁾ Specified by design and characterization; not tested in production.

In CMOS mode, the DRVDD current scales with the sampling frequency and the load capacitance on the output pins (see Figure 30). The maximum DRVDD current depends on the actual load capacitance on the digital output lines. Note that the maximum recommended load capacitance is 10 pF.

ELECTRICAL CHARACTERISTICS

Typical values are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.

PARAMETER	TES	T CONDITIONS	Tj = -4	0°C to 125°	C	Tj	j= 210°C		UNIT
FANAMETER	163	1 CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	JINIT
DYNAMIC AC CHARACT	ERISTICS								
	F _{in} = 10 MHz			74.7					
	F _{in} = 50 MHz			74.4					
SNR	F _{in} = 70 MHz		61.5	74.4		57.5	74		
Signal-to-noise ratio,	F _{in} = 170 MHz	0 dB Gain		72.7					dBFS
CIVIOS	.	3.5 dB Coarse gain		71.8					
	F _{in} = 230 MHz	0 dB Gain		71.7			65.5		
		3.5 dB Coarse gain		70.9			63		
	F _{in} = 10 MHz			75					
	F _{in} = 50 MHz			74.6					
SNR Signal-to-noise ratio, LVDS	F _{in} = 70 MHz		68	74.6		62	75		
	F _{in} = 170 MHz	0 dB Gain		72.9					dBFS
LANO	. _{III} = 17 0 WI 12	3.5 dB Coarse gain		72.1					
	F _{in} = 230 MHz	0 dB Gain		72			60		
	. IN - 200 IVII IZ	3.5 dB Coarse gain		71.2					
RMS output noise	Inputs tied to comm	non-mode		1.05					LSB
	F _{in} = 10 MHz			74.6					
SINAD Signal-to-noise and distortion ratio CMOS	$F_{in} = 50 \text{ MHz}$		74.1						
	F _{in} = 70 MHz		60.5	74.0		56.5	74		
	E 470 MH-	0 dB Gain		72.2					dBFS
	F _{in} = 170 MHz	3.5 dB Coarse gain		71.5					
	F 000 MH-	0 dB Gain		70.6			56		
	$F_{in} = 230 \text{ MHz}$	3.5 dB Coarse gain		70.4			57		
	F _{in} = 10 MHz			74.9					
	F _{in} = 50 MHz			74.4					
SINAD	F _{in} = 70 MHz		67	74.4		64	74		
Signal-to-noise and distortion ratio	E 470 MH-	0 dB Gain		72.4					dBFS
LVDS	$F_{in} = 170 \text{ MHz}$	3.5 dB Coarse gain		71.9					
	E 000 MIL	0 dB Gain		70.5			56		
	$F_{in} = 230 \text{ MHz}$	3.5 dB Coarse gain		70.5					
ENOB	F _{in} = 50 MHz	+							.
Effective number of bits	F _{in} = 70 MHz		10.5	12		9.4	12		Bits
	F _{in} = 10 MHz			95					
	F _{in} = 50 MHz			89					
SFDR	F _{in} = 70 MHz		70	78		66	77		
Spurious free dynamic		0 dB Gain		82					dBc
range	F _{in} = 170 MHz	3.5 dB Coarse gain		84					
		0 dB Gain		79			58		
	$F_{in} = 230 \text{ MHz}$	3.5 dB Coarse gain		82			60		
	F _{in} = 10 MHz			93					
	F _{in} = 50 MHz			88					
	F _{in} = 70 MHz		72	85		66	75		
THD		0 dB Gain		80					dBc
Total harmonic distortion	$F_{in} = 170 \text{ MHz}$	3.5 dB Coarse gain		82					
		0 dB Gain		76			56		
	$F_{in} = 230 \text{ MHz}$	3.5 dB Coarse gain		78.5			59		

ELECTRICAL CHARACTERISTICS (continued)

Typical values are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.

PARAMETER	TEST CONDITIONS		Tj = -4	0°C to 125°	°C	Tj	= 210°C		UNIT
PARAMETER	IES	of CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	F _{in} = 10 MHz			98					
	F _{in} = 50 MHz			96					
HD2	F _{in} = 70 MHz		73	93		66	76		
Second harmonic	F 470 MH-	0 dB Gain		86					dBc
distortion	F _{in} = 170 MHz	3.5 dB Coarse gain		87					
	F _{in} = 230 MHz	0 dB Gain		79			58		
	F _{in} = 230 IVITZ	3.5 dB Coarse gain		81			60		
	F _{in} = 10 MHz			95					
	F _{in} = 50 MHz			89					
HD3 Third harmonic distortion	F _{in} = 70 MHz		75	86		70	84		
	F _{in} = 170 MHz	0 dB Gain		82					dBc
	F _{in} = 170 MHZ	3.5 dB Coarse gain		84					
	E 220 MH=	0 dB Gain		79			75		
	F _{in} = 230 MHz	3.5 dB Coarse gain		82			74		
	F _{in} = 10 MHz			97					
	F _{in} = 50 MHz			96					
Worst spur (other than HD2, HD3)	F _{in} = 70 MHz			95					dBc
52,50)	F _{in} = 170 MHz		91						
	F _{in} = 230 MHz			90					
IMD 2-Tone intermodulation distortion	F1 = 185 MHz, F2 = 190 MHz, Each tone at -7 dBFS			91			90		dBFS
Input overload recovery	Recovery to within 3% (of final value) for 6-dB overload with sine wave input			1			1		clock cycles
PSRR AC Power supply rejection ratio	For 100 mVpp sign	nal on AVDD supply		49			48		dBc

DIGITAL CHARACTERISTICS

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1, AVDD = 3.3 V

	PARAMETER	TEST CONDITIONS	Tj = -40°0	Tj = -40°C to 85°C			= 210°C		UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	L INPUTS CLK, SDATA, and SEN	(1)							
	High-level input voltage		2.4			2.4			V
	Low-level input voltage				0.8			8.0	V
	High-level input current			33			33		μΑ
	Low-level input current			-33			-33		μΑ
	Input capacitance			4			4		pF
	L OUTPUTS INTERFACE, DRVDD = 1	I.8 to 3.3 V							
	High-level output voltage		DR	VDD			DRVDD		V
	Low-level output voltage			0			0		V
	Output capacitance	Output capacitance inside the device, from each output to ground		2			2		pF
	L OUTPUTS NTERFACE, DRVDD = 3	.3 V, I_0 = 3.5 mA, R_L = 100 Ω ⁽²⁾							
	High-level output voltage			1375			1375		mV
	Low-level output voltage			1025			1025		mV
V _{OD}	Output differential voltage		225	350		225	350		mV
Vos	Output offset voltage, single-ended	Common-mode voltage of OUTP, OUTM		1200			1200		mV
	Output capacitance	Output capacitance inside the device, from either output to ground		2			2		pF

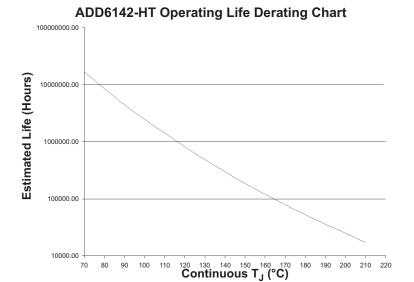
 ⁽¹⁾ SCLK and SEN function as digital input pins when they are used for serial interface programming. When used as parallel control pins, analog voltage needs to be applied as per Table 3 & Table 4
 (2) I_O Refers to the LVDS buffer current setting, R_L is the differential load resistance between the LVDS output pair.

ZHCS611 – DECEMBER 2011 www.ti.com.cn

TEXAS INSTRUMENTS

TIMING CHARACTERISTICS – LVDS AND CMOS MODES(1)

Typical values are at 25°C, min and max values are across the full temperature range $T_{MIN} = -40$ °C to $T_{MAX} = 125$ °C or 210°C as indicated, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 V_{PP} clock amplitude, $C_L = 5 \ pF^{(2)}$, $I_O = 3.5 \ mA$, $R_L = 100 \ \Omega^{(3)}$, no internal termination, unless otherwise noted.


For timings at lower sampling frequencies, see section Output Timings in the APPLICATION INFORMATION of this data sheet.

	DADAMETER	TEOT CONST	TIONS	Tj = -5	5°C to 125°C	;	Tj	j = 210°C		T.11411.T
,	PARAMETER	TEST CONDI	IIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _a	Aperture delay				1.5					ns
t _j	Aperture jitter				150					fs rms
		From global power do	own		15					μs
	Wake-up time	From standby			15					μs
	(to valid data)	From output buffer	CMOS		100					ns
		disable	LVDS		200					ns
	Latency				9					clock cycles
DDR LVI	DS MODE ⁽⁴⁾ , DRVDD	= 3.3 V				·				
t _{su}	Data setup time ⁽⁵⁾	Data valid ⁽⁶⁾ to zero- CLKOUTP	cross of		5.8			5.6		ns
t _h	Data hold time ⁽⁵⁾	Zero-cross of CLKOUTP to data becoming invalid (6)			1.3			1.5		ns
t _{PDI}	Clock propagation delay	Input clock rising edg to output clock rising zero-cross			6.2			7.2		ns
	LVDS bit clock duty cycle	Duty cycle of differen (CLKOUTP-CLKOUT $10 \le F_s \le 125 \text{ MSPS}$			46%			46%		
t _r t _f	Data rise time, Data fall time	Rise time measured to 50 mV, Fall time measured fr to -50 mV, $1 \le F_s \le 125$ MSPS		112		116			ps	
t _{CLKRISE} t _{CLKFALL}	Output clock rise time, Output clock fall time	to 50 mV,	measured from –50 mV neasured from 50 mV 112 5 MSPS			116			ps	
PARALL	EL CMOS MODE, DR	RVDD = 2.5 V to 3.3 V,	default output	buffer drive st	rength (7)					
t _{su}	Data setup time ⁽⁵⁾	Data valid ⁽⁸⁾ to 50% or rising edge	of CLKOUT		8			9		ns
t _h	Data hold time ⁽⁵⁾	50% of CLKOUT rising data becoming invalid			6.5			6.8		ns
t _{PDI}	Clock propagation delay	Input clock rising edg to 50% of CLKOUT ri			7.3			8.3		ns
	Output clock duty cycle	Duty cycle of output clock (CLKOUT), 10 ≤ F _s ≤ 125 MSPS		42%				42%		
t _r t _f	Data rise time, Data fall time	80% of DRVDD,	ime measured from 80% to of DRVDD,				2.1			ns
t _{CLKRISE} t _{CLKFALL}	Output clock rise time, Output clock fall time	Rise time measured to 80% of DRVDD, Fall time measured from 20% of DRVDD, $1 \le F_s \le 125$ MSPS			1.9			2.1		ns

- (1) Timing parameters are specified by design and not tested in production.
- (2) C_L is the Effective external single-ended load capacitance between each output pin and ground.
- (3) Io Refers to the LVDS buffer current setting; R_L is the differential load resistance between the LVDS output pair.
- 4) Measurements are done with a transmission line of 100 Ω characteristic impedance between the device and the load.
- (5) Setup and hold time specifications take into account the effect of jitter on the output data and clock.
- (6) Data valid refers to a logic high of +100 mV and logic low of -100 mV.
- (7) For DRVDD < 2.2 V, it is recommended to use an external clock for data capture and NOT the device output clock signal (CLKOUT). See Parallel CMOS interface in the application section.
- (8) Data valid refers to a logic high of 2 \dot{V} (1.7 V) and logic low of 0.8 V (0.7 V) for DRVDD = 3.3 V (2.5 V).

www.ti.com.cn ZHCS611 – DECEMBER 2011

- (1) See data sheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wearout for the specific device process and design characteristics.

Figure 1. ADS6142-HT Operating Life Derating Chart

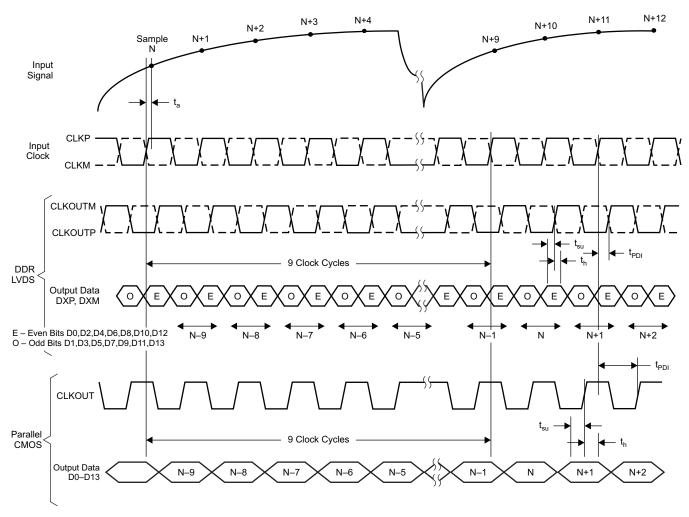
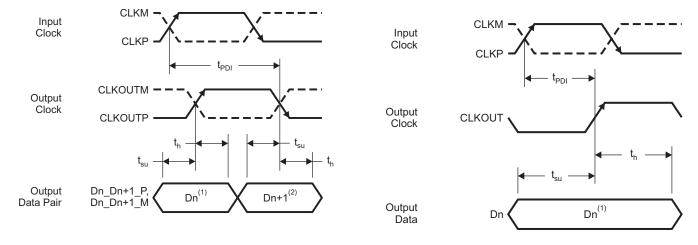



Figure 2. Latency

⁽¹⁾Dn — Bits D0, D2, D4, D6, D8, D10, D12 ⁽²⁾Dn+1 — Bits D1, D3, D5, D7, D9, D11, D13

Figure 3. LVDS Mode Timing

⁽¹⁾Dn – Bits D0–D13

Figure 4. CMOS Mode Timing

DEVICE DROOP A MANUAL MODE

DEVICE PROGRAMMING MODES

The ADS6142 has several features that can be easily configured using either parallel interface control or serial interface programming.

USING SERIAL INTERFACE PROGRAMMING ONLY

To program using the serial interface, the internal registers must first be reset to their default values, and the RESET pin must be kept *low*. In this mode, SEN, SDATA, and SCLK function as serial interface pins and are used to access the internal registers of the ADC. The registers are reset either by applying a pulse on the RESET pin or by a *high* setting on the <RST> bit (D4 in register 0x00). The Serial Interface section describes register programming and register reset in more detail.

USING PARALLEL INTERFACE CONTROL ONLY

To control the device using the parallel interface, keep RESET tied *high* (AVDD). Now SEN, SCLK, SDATA, and PDN function as parallel interface control pins. These pins can be used to directly control certain modes of the ADC by connecting them to the correct voltage levels (as described in Table 3 to Table 5). There is no need to apply a reset pulse.

Frequently used functions are controlled in this mode — standby, selection between LVDS/CMOS output format, internal/external reference, and 2s complement/straight binary output format.

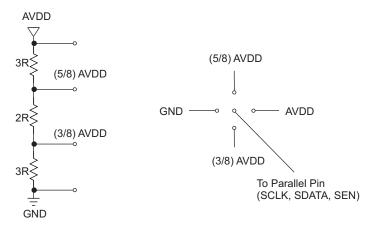


Figure 5. Simple Scheme to Configure Parallel Pins

DESCRIPTION OF PARALLEL PINS

Table 3. SCLK (Analog Control Pin)

SCLK	DESCRIPTION				
0	0 Internal reference and 0 dB gain (full-scale = 2 V _{PP})				
(3/8) AVDD	(3/8) AVDD External reference and 0 dB gain (full-scale = 2 V _{PP})				
(5/8) AVDD	External reference and 3.5 dB coarse gain (full-scale = 1.34 V _{PP})				
AVDD	Internal reference and 3.5 dB coarse gain (full-scale = 1.34 V _{PP})				

Table 4. SEN (Analog Control Pin)

SEN	DESCRIPTION
0	2s Complement format and DDR LVDS interface
(3/8) AVDD	Straight binary format and DDR LVDS interface
(5/8) AVDD	Straight binary and parallel CMOS interface
AVDD	2s Complement format and parallel CMOS interface

ZHCS611 – DECEMBER 2011 www.ti.com.cn

SDATA	PDN	DESCRIPTION
Low	Low	Normal operation
Low	High (AVDD)	Standby - only the ADC is powered down
High (AVDD)	Low	Output buffers are powered down, fast wake-up time
High (AVDD)	High (AVDD)	Global power down. ADC, internal reference, and output buffers are powered down, slow wake-up time

SERIAL INTERFACE

The ADC has a set of internal registers, which can be accessed through the serial interface formed by pins SEN (Serial interface Enable), SCLK (Serial Interface Clock), SDATA (Serial Interface Data) and RESET. After device power-up, the internal registers must be reset to their default values by applying a high-going pulse on RESET (of width greater than 10 ns).

Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every falling edge of SCLK when SEN is active (low). The serial data is loaded into the register at every 16th SCLK falling edge when SEN is low. If the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data is loaded in multiples of 16-bit words within a single active SEN pulse.

The first 5 bits form the register address and the remaining 11 bits form the register data.

The interface can work with a SCLK frequency from 20 MHz down to very low speeds (a few hertz) and also with a non-50% SCLK duty cycle.

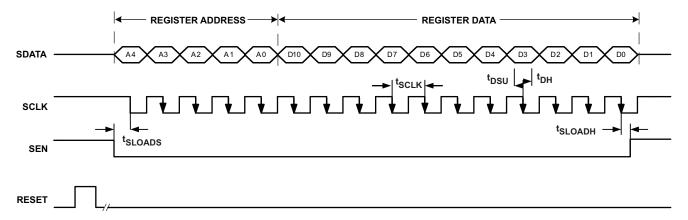


Figure 6. Serial Interface Timing Diagram

REGISTER INITIALIZATION

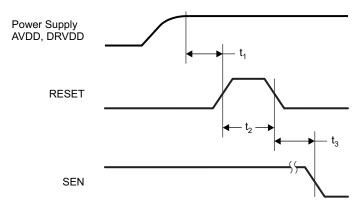
After power-up, the internal registers *must* be reset to their default values. This is done in one of two ways:

1. Either through a hardware reset by applying a high-going pulse on the RESET pin (width greater than 10 ns) as shown in Figure 6.

OR

2. By applying a software reset. Using the serial interface, set the <RST> bit (D4 in register 0x00) to *high*. This initializes the internal registers to their default values and then self-resets the <RST> bit to *low*. In this case the RESET pin is kept *low*.

SERIAL INTERFACE TIMING


Typical values at 25°C, min and max values across the full temperature range $T_{MIN} = -40$ °C to $T_{MAX} = 210$ °C, AVDD = DRVDD = 3.3 V (unless otherwise noted)

		MIN	TYP MAX	UNIT
f _{SCLK}	SCLK Frequency = 1/t _{SCLK}	> DC	20	MHz
t _{SLOADS}	SEN to SCLK Setup time	25		ns
t _{SLOADH}	SCLK to SEN Hold time	25		ns
t _{DSU}	SDATA Setup time	25		ns
t _{DH}	SDATA Hold time	25		ns

RESET TIMING

Typical values at 25°C, min and max values across the full temperature range $T_{MIN} = -40$ °C to $T_{MAX} = 85$ °C, AVDD = DRVDD = 3.3 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t ₁	Power-on delay	Delay from power-up of AVDD and DRVDD to RESET pulse active	5			ms
t ₂	Reset pulse width	Pulse width of active RESET signal	10			ns
t ₃	Register write delay	Delay from RESET disable to SEN active	25			ns
t _{PO}	Power-up time	Delay from power-up of AVDD and DRVDD to output stable		6.5		ms

NOTE: A high-going pulse on the RESET pin is required in serial interface mode in the case of initialization through a hardware reset. For parallel interface operation, RESET has to be tied permanently HIGH.

Figure 7. Reset Timing Diagram

ISTRUMENTS

SERIAL REGISTER MAP

Table 6 gives a summary of all the modes that can be programmed through the serial interface.

Table 6. Summary of Functions Supported by Serial Interface⁽¹⁾ (2)

REGISTER ADDRESS IN HEX					REGIS	TER FUNCT	IONS				
A4 - A0	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00	<pdn obuf=""> Output buffers powered down</pdn>	<coarse gain=""> Coarse gain</coarse>	<lvds cmos=""> LVDS or CMOS Output interface</lvds>	0	0	<ref> Internal or external Reference</ref>	<rst> Software reset</rst>	0	<pdn clkout=""> Output clock buffer powered down</pdn>	0	<stby> ADC Power down</stby>
04	<pre><dataout posn=""> Output data position control</dataout></pre>	<clkout EDGE> Output clock edge control</clkout 	<clkout posn=""> Output clock position control</clkout>	0	0	0	0	0	0	0	0
09	Bit-wise or Byte-wise control	0	0	0	0	0	0	0	0	0	0
0A	<pre><data format=""> 2s Complemen t or straight binary</data></pre>	0	0	<tes< td=""><td>ST PATTER</td><td>RNS></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tes<>	ST PATTER	RNS>	0	0	0	0	0
0B					oattern lower					0	0
0C	F	<fine gain:<br="">ine gain 0 to 6</fine>		0 0 CUSTOM HIGH> Custom pattern upper 5 bits							
0E	0	LVDS Termination								DC	JRRENT DUBLE> urrent double
0F	0	0	0	CMOS		STRENGTH: er drive stren		0	0	0	0

⁽¹⁾ The unused bits in each register (shown by blank cells in above table) must be programmed as '0'.(2) Multiple functions in a register can be programmed in a single write operation.

DESCRIPTION OF SERIAL REGISTERS

Each register function is explained in detail.

Table 7.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
00	<pdn obuf=""> Output buffers powered down</pdn>		<lvds cmos=""> LVDS or CMOS Output interface</lvds>	0	0	<ref> Internal or external reference</ref>	<rst> Software reset</rst>	0	<pdn clkout=""> Output clock buffer powered down</pdn>	0	<stby> ADC Power down</stby>	
	00 <s< th=""><th colspan="11"><stby> Power down modes</stby></th></s<>	<stby> Power down modes</stby>										
	0 Noi	mal operation	on									
	1 Dev	vice enters s	tandby mode v	vhere or	ıly Al	DC is powe	ered dow	n.				
)2 <pi< th=""><th>ON CLKOUT</th><th>Γ> Power down</th><th>modes</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pi<>	ON CLKOUT	Γ> Power down	modes								
	0 Out	tput clock is	active (on CLK	OUT pir	າ)							
	1 Out	Output clock buffer is powered down and becomes three-stated. Data outputs are unaffected.										
	04 <r< th=""><th colspan="9"><rst></rst></th><th></th></r<>	<rst></rst>										
	1 Sof	tware reset	applied - resets	all inte	rnal r	registers ar	nd the bit	self-	clears to 0.			
	05 <r< th=""><th>EF> Referer</th><th>ce selection</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></r<>	EF> Referer	ce selection									
-	0 Inte	rnal referen	ce enabled									
	1 Ext	ernal referer	nce enabled									
)8 <l\< th=""><th>DS CMOS</th><th>Output Interfa</th><th>ice seled</th><th>ction</th><th></th><th></th><th></th><th></th><th></th><th></th></l\<>	DS CMOS	Output Interfa	ice seled	ction							
		allel CMOS										
	1 DD	R LVDS Inte	erface									
)9 <c< th=""><th>OARSE GAI</th><th>N> Gain progra</th><th>amming</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></c<>	OARSE GAI	N> Gain progra	amming								
		B Coarse ga										
	1 3.5	3.5 dB Coarse gain										
D	10 <pi< th=""><th colspan="10"><pdn obuf=""> Power down modes</pdn></th></pi<>	<pdn obuf=""> Power down modes</pdn>										
	0 Out	Output data and clock buffers enabled										
	1 Out	tput data and	d clock buffers	disabled	I							

Table 8.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
04	<pre><dataout posn=""> Output data position control</dataout></pre>	<clkout edge=""> Output Clock edge control</clkout>	<pre><clkout posn=""> Output clock position control</clkout></pre>	0	0	0	0	0	0	0	0

D8 <CLKOUT POSN> Output clock position control

- O Default output clock position after reset. The setup/hold timings for this clock position are specified in the timing specifications table.
- 1 Output clock shifted (delayed) by 400 ps

D9 <CLKOUT EDGE>

- 0 Use rising edge to capture data
- 1 Use falling edge to capture data

D10 <DATAOUT_POSN>

- O Default position (after reset)
- 1 Data transition delayed by half clock cycle with respect to default position

Table 9.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
09	Bit-wise or Byte-wise control	0	0	0	0	0	0	0	0	0	0

D10 Bit-wise or byte-wise selection (DDR LVDS mode only)

- Dit-wise sequence Even data bits (D0, D2, D4,..D12) are output at the rising edge of CLKOUTP and odd data bits (D1, D3, D5,..D13) at the falling edge of CLKOUTP
- Byte-wise sequence Lower 7 data bits (D0-D7) are output at the rising edge of CLKOUTP and upper 7 data bits (D8-D13) at the falling edge of CLKOUTP

www.ti.com.cn ZHCS611 – DECEMBER 2011

Table 10.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0A	<df> 2s Complement or straight binary</df>	0	0	<tes< td=""><td>T PATTE</td><td>RNS></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tes<>	T PATTE	RNS>	0	0	0	0	0

D7-D5 Test patterns

- 000 Normal operation <D13:D0> = ADC output
- 001 All zeros <D13:D0> = 0x0000
- 010 All ones <D13:D0> = 0x3FFF
- 011 Toggle pattern <D13:D0> toggles between 0x2AAA and 0x1555
- Digital ramp <D13:D0> increments from 0x0000 to 0x3FFF by one code every cycle
- 101 Custom pattern <D13:D0> = contents of CUSTOM PATTERN registers
- 110 Unused
- 111 Unused

D10 <DATA FORMAT>

- 0 2s Complement
- 1 Straight binary

Table 11.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0B			Law	<custom l<="" td=""><td></td><th></th><td></td><td></td><td></td><td>0</td><td>0</td></custom>						0	0
			LOW	er 9 bits of cus	stom patte	ern					

Table 12.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0C		<fine 0="" 6<="" fine="" gain="" td="" to=""><td></td><td>0</td><td>0</td><td>0</td><td>Ų</td><td></td><td>JSTOM H its of cus</td><td></td><td>ern</td></fine>		0	0	0	Ų		JSTOM H its of cus		ern

- Reg 0B <CUSTOM LOW> Specifies lower 9 bits of custom pattern
- D10-D2

<CUSTOM HIGH> - Specifies upper 5 bits of custom pattern

Reg 0C D4-D0

110

D10-D8 <FINE GAIN> Gain programming

000	0 dB Gain
001	1 dB Gain
010	2 dB Gain
011	3 dB Gain
100	4 dB Gain
101	5 dB Gain

111 Unused

6 dB Gain

Table 13.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0E	0	<pre></pre>								BLE> Current	
D1-D0	<current double=""> LVDS current programming</current>										
D0			er current co								
0		•	set by <lvds< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lvds<>								
1	2x L	VDS Current	t set by <lvd< th=""><th>S_CURR></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lvd<>	S_CURR>							
D1	LVD	S Clock but	fer current o	ontrol							
0	Defa	ault current, s	set by <lvds< th=""><th>CURR></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lvds<>	CURR>							
1	2x L	VDS Current	t set by <lvd< th=""><th>S_CURR></th><th></th><th></th><th></th><td></td><th></th><td></td><th></th></lvd<>	S_CURR>							
D3-D2	<lv< th=""><th>DS CURREN</th><th>NT> LVDS cu</th><th>rrent prograr</th><th>mming</th><th></th><th></th><th></th><th></th><th></th><th></th></lv<>	DS CURREN	NT> LVDS cu	rrent prograr	mming						
00	3.5	mA									
01	2.5	mA									
10	4.5	mA									
11	1.75	5 mA									
D9-D4	LVD	S internal te	rmination								
D9-D7	<da< th=""><th>ATA TERM></th><th>Internal termi</th><th>nation for LV</th><th>/DS outp</th><th>out data</th><th>bits</th><th></th><th></th><th></th><th></th></da<>	ATA TERM>	Internal termi	nation for LV	/DS outp	out data	bits				
000	No i	nternal termi	nation								
001	300	Ω									
010	185	Ω									
011	115	Ω									
100	150	Ω									
101	100	Ω									
110	2 08										
111	65 (Ω									
D6-D4	<cl< th=""><th colspan="8"><clkout term=""> Internal termination for LVDS output clock</clkout></th></cl<>	<clkout term=""> Internal termination for LVDS output clock</clkout>									
000	No i	No internal termination									
001	300	300 Ω									
010	185	185 Ω									
011	115	115 Ω									
100	150	150 Ω									
101	100	100 Ω									
110	80 0	80 Ω									
111	65 (65 Ω									

www.ti.com.cn ZHCS611 – DECEMBER 2011

Table 14.

A4-A0 (hex)	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0F	0	0	0	<pre><drive strength=""> CMOS Output buffer drive strength control</drive></pre>			0	0	0	0	

D7-D4	<drive strength=""> Output buffer drive strength controls</drive>
0101	WEAKER than default drive
0000	DEFAULT drive strength
1111	STRONGER than default drive strength (recommended for load capacitances > 5 pF)
1010	MAXIMUM drive strength (recommended for load capacitances > 5 pF)
Other combinations	Do not use

ZHCS611 – DECEMBER 2011 www.ti.com.cn

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 V_{PP} differential clock amplitude, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)

FFT for 230 MHz INPUT SIGNAL

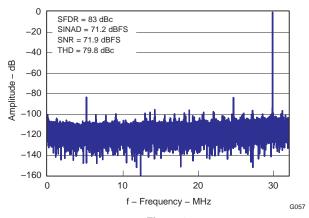


Figure 8.

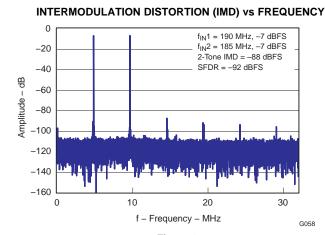


Figure 9.

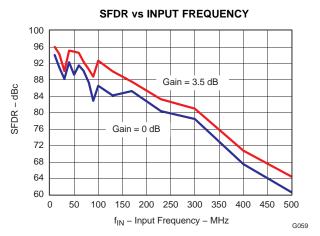


Figure 10.

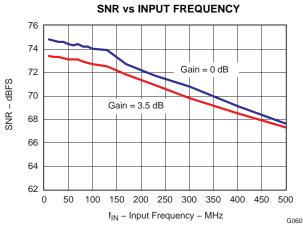


Figure 11.

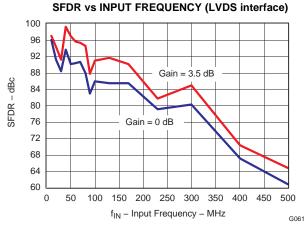


Figure 12.

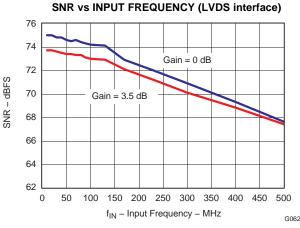
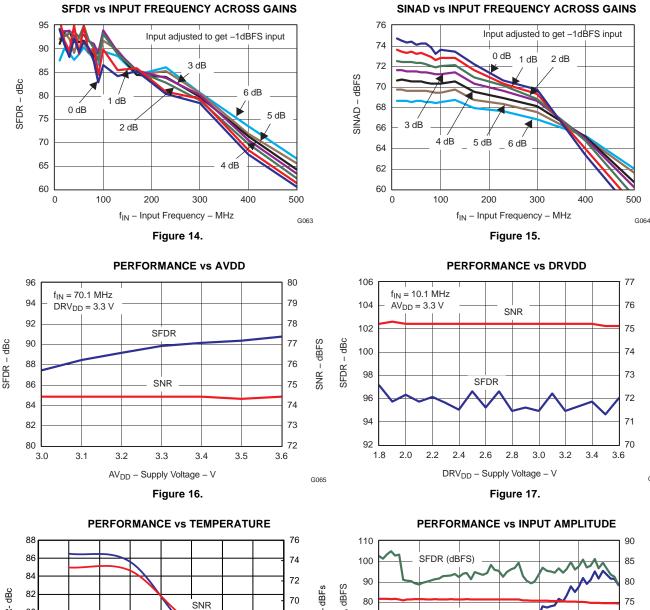



Figure 13.

TYPICAL CHARACTERISTICS (continued)

All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 V_{PP} differential clock amplitude, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)

dBc SFDR-80 68 78 **SFDR** 66 76 64 74 62 72 = 70 MHz 60 -55 25 125 210 T - Temperature - °C

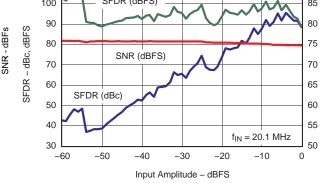


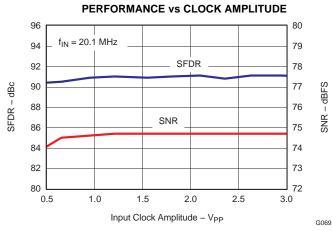
Figure 18.

Figure 19.

SNR - dBFS

G066

SNR - dBFS


G068

ZHCS611 - DECEMBER 2011 www.ti.com.cn

ISTRUMENTS

TYPICAL CHARACTERISTICS (continued)

All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 V_{PP} differential clock amplitude, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)

PERFORMANCE vs INPUT CLOCK DUTY CYCLE 98 SFDR 94 76 90 75 SFDR - dBc SNR - dBFS 86 74 SNR 82 73 78 72 74 71 $f_{\text{IN}} = 10.1 \text{ MHz}$ 70 70 30 35 40 45 50 55 60 65 70 Input Clock Duty Cycle - % G070

Figure 20.

Figure 21.

OUTPUT NOISE HISTOGRAM WITH INPUTS TIED TO COMMON-MODE

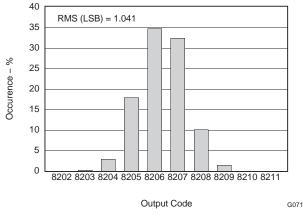


Figure 22.

PERFORMANCE IN EXTERNAL REFERENCE MODE

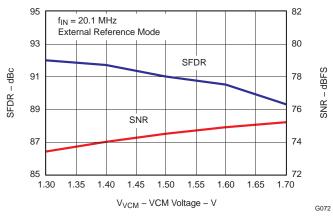
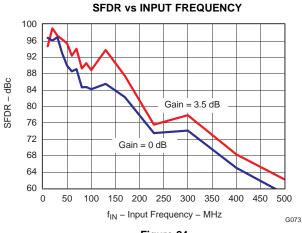


Figure 23.



TYPICAL CHARACTERISTICS - LOW SAMPLING FREQUENCIES

All plots are at 25° C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 V_{PP} differential clock amplitude, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)

$F_S = 40 MSPS$

www.ti.com.cn

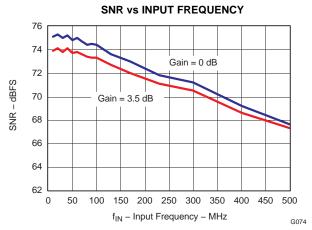


Figure 25.

$F_S = 25 MSPS$

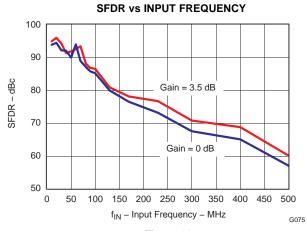


Figure 26.

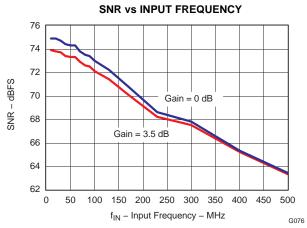


Figure 27.

ZHCS611 - DECEMBER 2011 www.ti.com.cn

ISTRUMENTS

COMMON PLOTS

All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 V_{PP} differential clock amplitude, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)

COMMON-MODE REJECTION RATIO vs FREQUENCY

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 150 200 250 300 f - Frequency - MHz G077

SAMPLING FREQUENCY (DDR LVDS and CMOS) 0.8 $f_{\text{IN}} = 2.5 \text{ MHz}$

POWER DISSIPATION

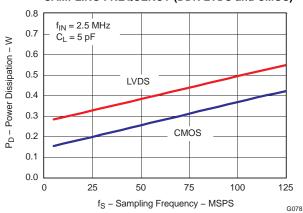
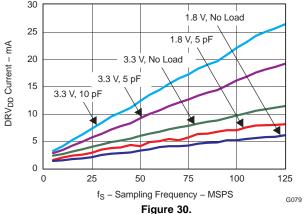



Figure 28. Figure 29.

DRVDD current

SAMPLING FREQUENCY ACROSS LOAD CAPACITANCE (CMOS)

ZHCS611 - DECEMBER 2011 www.ti.com.cn

Contour Plots Across Input and Sampling Frequencies

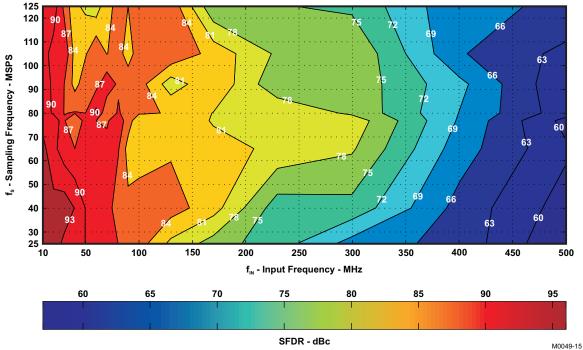


Figure 31. SFDR Contour (no gain, $F_s = 2 V_{PP}$)

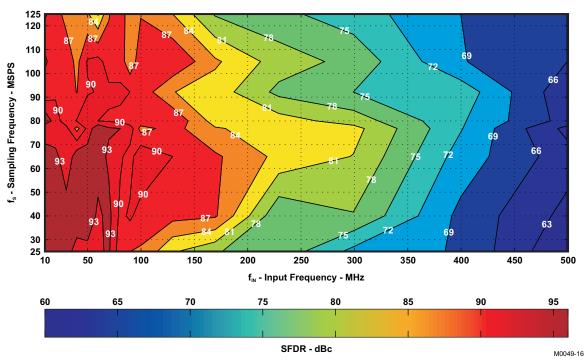


Figure 32. SFDR Contour (with 3.5 dB coarse gain, $F_S = 1.34 V_{PP}$)

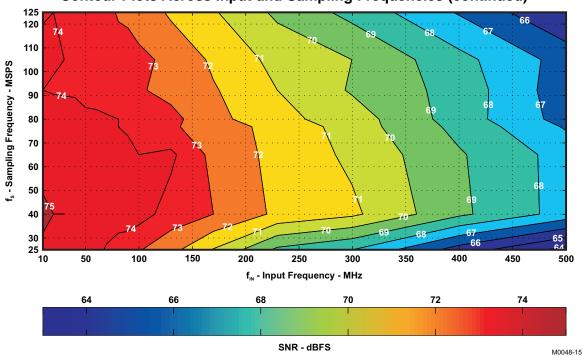


Figure 33. SNR Contour (no gain, $F_S = 2 V_{PP}$)

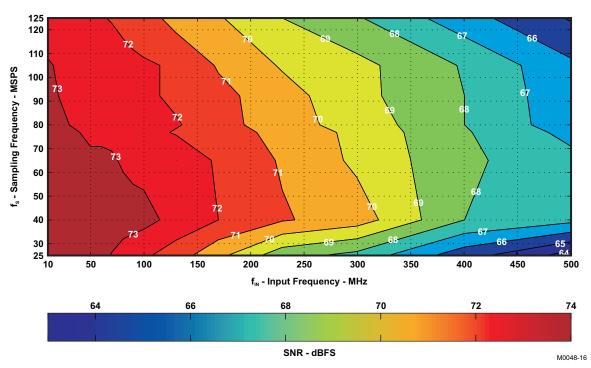


Figure 34. SNR Contour (with 3.5 dB coarse gain, $F_S = 1.34 V_{PP}$)

www.ti.com.cn ZHCS611 – DECEMBER 2011

APPLICATION INFORMATION

THEORY OF OPERATION

The ADS6142 is a low power, 14-bit pipeline ADC in a CMOS process with a 65 MSPS sampling frequency. This device is based on switched capacitor technology and run off a single 3.3-V supply. The conversion process is initiated by the rising edge of the external input clock. Once the signal is captured by the input sample and hold, the input sample is sequentially converted by a series of lower resolution stages, with the outputs combined in a digital correction logic block. At every clock edge, the sample propagates through the pipeline resulting in a data latency of 9 clock cycles. The output is available as 14-bit data, in DDR LVDS or CMOS and coded in either straight offset binary or binary 2s complement format.

ANALOG INPUT

The analog input consists of a switched-capacitor based differential sample and hold architecture, shown in Figure 35.

This differential topology results in good ac-performance even for high input frequencies at high sampling rates. The INP and INM pins have to be externally biased around a common-mode voltage of 1.5 V available on the VCM pin. For a full-scale differential input, each input pin (INP, INM) has to swing symmetrically between VCM + 0.5 V and VCM - 0.5 V, resulting in a 2V_{PP} differential input swing. The maximum swing is determined by the internal reference voltages REFP (2.5 V nominal) and REFM (0.5 V, nominal).

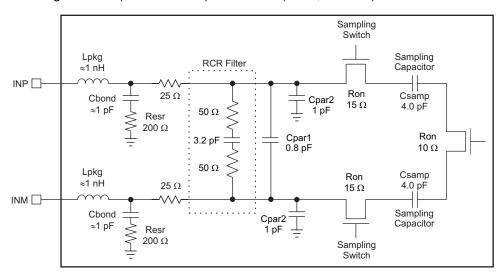


Figure 35. Input Stage

The input sampling circuit has a high 3dB bandwidth that extends up to 300 MHz (measured from the input pins to the voltage across the sampling capacitors).

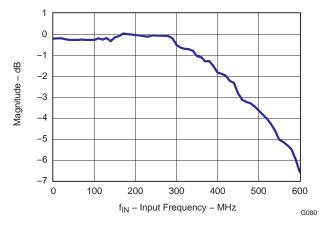


Figure 36. ADC Analog Input Bandwidth

Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially. This improves the common-mode noise immunity and even-order harmonic rejection.

A 5- Ω resistor in series with each input pin is recommended to damp out ringing caused by the package parasitics. It is also necessary to present low impedance (< 50 Ω) for the common-mode switching currents. For example, this is achieved by using two resistors from each input terminated to the common-mode voltage (VCM).

In addition to the above, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency range and matched impedance to the source. While doing this, the ADC input impedance (Zin) must be considered. Over a wide frequency range, the input impedance can be approximated by a parallel combination of Rin and Cin (Zin = Rin||Cin).

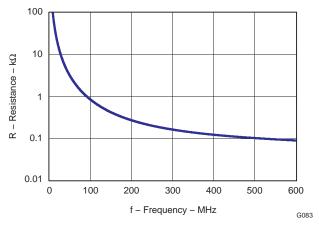


Figure 37. ADC Input Resistance, Rin

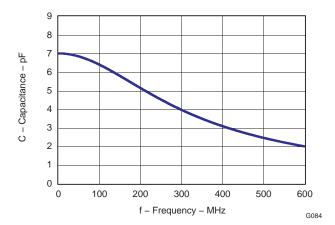


Figure 38. ADC Input Capacitance, Cin

Using RF-Transformer Based Drive Circuits

Figure 39 shows a configuration using a single 1:1 turn ratio transformer (for example, Coilcraft WBC1-1) that can be used for low input frequencies (about 100 MHz).

The single-ended signal is fed to the primary winding of the RF transformer. The transformer is terminated on the secondary side. Putting the termination on the secondary side helps to shield the kickbacks caused by the sampling circuit from the RF transformer's leakage inductances. The termination is accomplished by two resistors connected in series, with the center point connected to the 1.5 V common mode (VCM pin). The value of the termination resistors (connected to common mode) has to be low (< 100 Ω) to provide a low-impedance path for the ADC common-mode switching current.

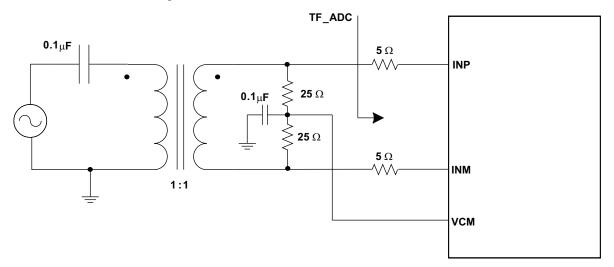


Figure 39. Single Transformer Drive Circuit

At high input frequencies, the mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch, and good performance is obtained for high frequency input signals. Figure 40 shows an example using two transformers (Coilcraft WBC1-1). An additional termination resistor pair (enclosed within the dotted box in Figure 40) may be required between the two transformers to improve the balance between the P and M sides. The center point of this termination must be connected to ground.

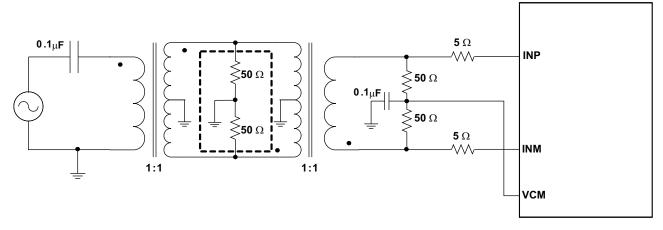


Figure 40. Two Transformer Drive Circuit

REFERENCE

The ADS6142 has built-in internal references REFP and REFM, requiring no external components. Design schemes are used to linearize the converter load seen by the references; this and the integration of the requisite reference capacitors on-chip eliminates the need for external decoupling. The full-scale input range of the converter is controlled in the external reference mode as explained below. The internal or external reference modes can be selected by programming the serial interface register bit <REF> (Table 7).

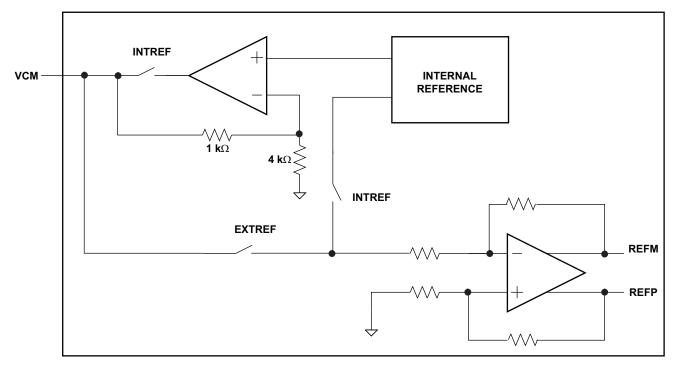


Figure 41. Reference Section

Internal Reference

When the device is in internal reference mode, the REFP and REFM voltages are generated internally. Common-mode voltage (1.5 V nominal) is output on the VCM pin, which can be used to externally bias the analog input pins.

External Reference

www.ti.com.cn

When the device is in external reference mode, VCM acts as a reference input pin. The voltage forced on the VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential input voltage corresponding to full-scale is given by Equation 1.

Full-scale differential input pp = (Voltage forced on VCM)
$$\times$$
 1.33

(1)

In this mode, the 1.5-V common-mode voltage to bias the input pins has to be generated externally. There is no change in performance compared to internal reference mode.

COARSE GAIN AND PROGRAMMABLE FINE GAIN

The ADS6142 includes gain settings that can be used to improve SFDR performance (compared to 0 dB gain mode). The gain settings are 3.5 dB coarse gain and 0 dB to 6 dB programmable fine gain. For each gain setting, the analog input full-scale range scales proportionally, as shown in Table 15.

The coarse gain is a fixed setting of 3.5 dB and is designed to improve SFDR with little degradation in SNR. The fine gain is programmable in 1 dB steps from 0 dB to 6 dB. With fine gain, SFDR improvement is also achieved, but at the expense of SNR (there is about 1 dB SNR degradation for every 1 dB of fine gain).

So, the fine gain can be used to trade-off between SFDR and SNR. The coarse gain makes it possible to get the best SFDR but without losing SNR significantly. At high input frequencies, the gains are especially useful as the SFDR improvement is significant with marginal degradation in SINAD. The gains can be programmed using the register bits <COARSE GAIN> (see Table 7) and <FINE GAIN> (see Table 12). Note that the default gain after reset is 0 dB.

Table 15. Full-Scale Range Across Gains

GAIN, dB	TYPE	FULL-SCALE RANGE, V _{PP}
0	Default after reset	2.00
3.5	Coarse setting (fixed)	1.34
1	Fine gain (programmable)	1.78
2		1.59
3		1.42
4		1.26
5		1.12
6		1.00

TEXAS INSTRUMENTS

CLOCK INPUT

The clock inputs of the ADS6142 can be driven differentially (SINE, LVPECL, or LVDS) or single-ended (LVCMOS), with little or no difference in performance between configurations. The common-mode voltage of the clock inputs is set to VCM using internal 5-k Ω resistors as shown in Figure 42. This allows the use of transformer-coupled drive circuits for the sine wave clock, or ac-coupling for the LVPECL, LVDS clock sources (see Figure 44 and Figure 45).

For best performance, it is recommended to drive the clock inputs differentially, reducing susceptibility to common-mode noise. In this case, it is best to connect both clock inputs to the differential input clock signal with 0.1-µF capacitors, as shown in Figure 44. A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-µF capacitor, as shown in Figure 45.

For high input frequency sampling, a clock source with very low jitter is recommended. Band-pass filtering of the clock source can help reduce the effect of jitter. There is no change in performance with a non-50% duty cycle clock input.

Figure 42. Internal Clock Buffer

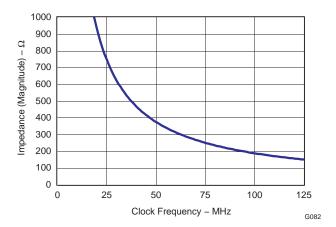


Figure 43. Clock Buffer Input Impedance

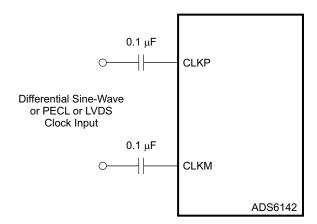


Figure 44. Differential Clock Driving Circuit

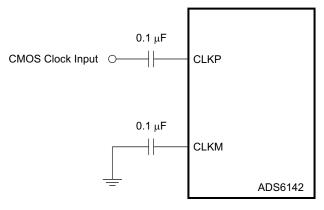


Figure 45. Single-Ended Clock Driving Circuit

TEXAS INSTRUMENTS

POWER-DOWN MODES

The ADS6142 has four power-down modes – global power down, standby, output buffer disable, and input clock stopped. These modes can be set using the serial interface or using the parallel interface (pins SDATA and PDN).

Table 16. Power-Down Modes

POWER-DOWN	PARALLEL IN	NTERFACE	SERIAL INTERFACE	TOTAL POWER,	WAKE-UP TIME	
MODES	SDATA PDN		REGISTER BIT (Table 7)	mW	(to valid data)	
Normal operation	Low	Low	<pdn obuf="">=0 and <stby>=0</stby></pdn>	417	-	
Standby	Low	High	<pdn obuf="">=0 and <stby>=1</stby></pdn>	72	Slow (15 μs)	
Output buffer disable	High	Low	<pdn obuf="">=1 and <stby>=0</stby></pdn>	408	Fast (200 ns)	
Global power down	High	High	<pdn obuf="">=1 and <stby>=1</stby></pdn>	30	Slow (15 μs)	

Global Power Down

In this mode, the A/D converter, internal references, and the output buffers are powered down and the total power dissipation reduces to about 30 mW. The output buffers are in a high-impedance state. The wake-up time from the global power down to output data becoming valid in normal mode is a maximum of 50 μ s. Note that after coming out of global power down, optimum performance is achieved after the internal reference voltages have stabilized (about 1 ms).

Standby

Only the A/D converter is powered down and total power dissipation is approximately 72 mW. The wake-up time from standby to output data becoming valid is a maximum of 50 µs.

Output Buffer Disable

The data output buffers can be disabled, reducing total power to about 408 mW. With the buffers disabled, the outputs are in a high-impedance state. The wake-up time from this mode to data becoming valid in normal mode is a maximum of 500 ns in LVDS mode and 200 ns in CMOS mode.

Input Clock Stop

The converter enters this mode when the input clock frequency falls below 1 MSPS. Power dissipation is approximately 120 mW, and the wake-up time from this mode to data becoming valid in normal mode is a maximum of $50 \, \mu s$.

Power Supply Sequence

During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are separated inside the device. Externally, they can be driven from separate supplies or from a single supply.

DIGITAL OUTPUT INTERFACE

The ADS6142 outputs 14 data bits together with an output clock. The output interface is either parallel CMOS or DDR LVDS voltage levels and can be selected using the serial register bit **LVDS CMOS**> or parallel pin SEN.

Parallel CMOS Interface

In CMOS mode, the output buffer supply (DRVDD) can be operated over a wide range from 1.8 V to 3.3 V (typical). Each data bit is output on a separate pin as a CMOS voltage level, every clock cycle.

For DRVDD ≥ 2.2 V, it is recommended to use the CMOS output clock (CLKOUT) to latch data in the receiving chip. The rising edge of CLKOUT can be used to latch data in the receiver, even at the highest sampling speed (125 MSPS). It is recommended to minimize the load capacitance seen by the data and clock output pins by using short traces to the receiver. Also, match the output data and clock traces to minimize the skew between them.

For DRVDD < 2.2 V, it is recommended to use an external clock (for example, input clock delayed to get desired setup/hold times).

Output Clock Position Programmability

There is an option to shift (delay) the output clock position so that the setup time increases by 400 ps (typical, with respect to the default timings specified). This may be useful if the receiver needs more setup time, especially at high sampling frequencies. This can be programmed using the serial interface register bit <**CLKOUT_POSN>** (Table 8).

Output Buffer Strength Programmability

Switching noise (caused by CMOS output data transitions) can couple into the analog inputs during the instant of sampling and degrade the SNR. The coupling and SNR degradation increases as the output buffer drive is made stronger. To minimize this, the ADS6142 CMOS output buffers are designed with a controlled drive strength for the best SNR. The default drive strength also ensures a wide data stable window for load capacitances up to 5 pF and a DRVDD supply voltage $\geq 2.2 \text{ V}$.

To ensure a wide data stable window for load capacitances > 5 pF, there is an option to increase the drive strength using the serial interface (<**DRIVE STRENGTH**>, see Table 14). Note that for a DRVDD supply voltage < 2.2 V, it is recommended to use the maximum drive strength (for any value of load capacitance).

CMOS Mode Power Dissipation

With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined by the average number of output bits switching, which is a function of the sampling frequency and the nature of the analog input signal.

Digital current due to CMOS output switching = $C_L \times DRVDD \times (N \times F_{AVG})$

where $C_L = load$ capacitance, $N \times F_{AVG} = average$ number of output bits switching (2)

Figure 30 shows the current with various load capacitances across sampling frequencies with a 2-MHz analog input frequency.

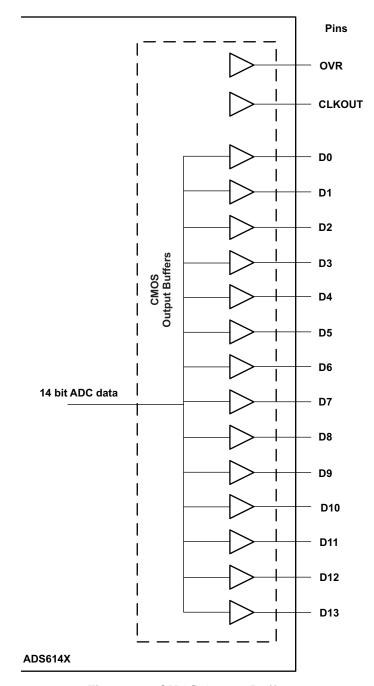


Figure 46. CMOS Output Buffers

DDR LVDS Interface

www.ti.com.cn

The LVDS interface works only with a 3.3-V DRVDD supply. In this mode, the 14 data bits and the output clock are available as LVDS (Low Voltage Differential Signal) levels. Two successive data bits are multiplexed and output on each LVDS differential pair every clock cycle (DDR - Double Data Rate, see Figure 47). So, there are 7 LVDS output pairs for the 14 data bits and 1 LVDS output pair for the output clock.

LVDS Buffer Current Programmability

The default LVDS buffer output current is 3.5 mA. When terminated by 100 Ω , this results in a 350-mV single-ended voltage swing (700-mV_{PP} differential swing). The LVDS buffer currents can also be programmed to 2.5 mA, 4.5 mA, and 1.75 mA (register bits **<LVDS CURRENT**>, see Table 13). In addition, there is a current double mode, where this current is doubled for the data and output clock buffers (register bits **<CURRENT DOUBLE>**, see Table 13).

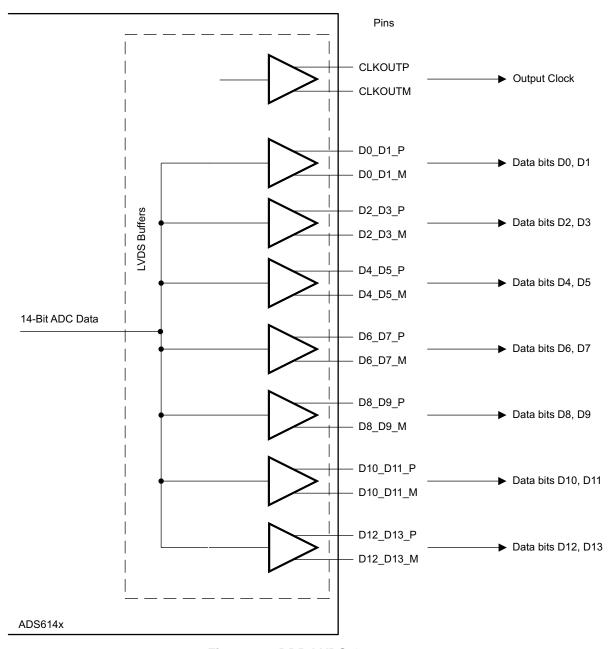
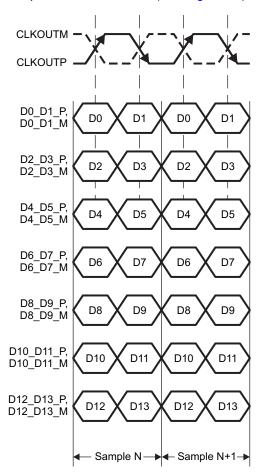
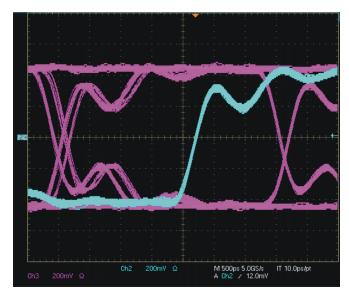


Figure 47. DDR LVDS Outputs

Even data bits D0, D2, D4, D6, D8, D10, and D12 are output at the rising edge of CLKOUTP and the odd data bits D1, D3, D5, D7, D9, D11, and D13 are output at the falling edge of CLKOUTP. Both the rising and falling edges of CLKOUTP must be used to capture all 14 data bits (see Figure 48).




Figure 48. DDR LVDS Interface

LVDS Buffer Internal Termination

An internal termination option is available (using the serial interface), by which the LVDS buffers are differentially terminated inside the device. The termination resistances available are – 300 Ω , 185 Ω , and 150 Ω (nominal with ±20% variation). Any combination of these three terminations can be programmed; the effective termination is the parallel combination of the selected resistances. This results in eight effective terminations from open (no termination) to 65 Ω .

The internal termination helps to absorb any reflections coming from the receiver end, improving the signal integrity. With $100-\Omega$ internal and $100-\Omega$ external termination, the voltage swing at the receiver end is halved (compared to no internal termination). The voltage swing can be restored by using the LVDS current double mode. Figure 49 and Figure 50 compare the LVDS eye diagrams without and with internal termination (100 Ω). With internal termination, the eye looks clean even with 10-pF load capacitance (from each output pin to ground). The termination is programmed using register bits **>DATA TERM>** and **>CLKOUT TERM>** (see Table 13).

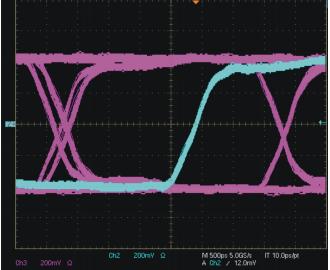


Figure 49. LVDS Eye Diagram - No Internal Termination
5-pF Load Capacitance
Blue Trace - Output Clock (CLKOUT)
Pink Trace - Output Data

Figure 50. LVDS Eye Diagram with 100-Ω Internal Termination 10-pF Load Capacitance Blue Trace - Output Clock (CLKOUT) Pink Trace - Output Data

Output Data Format

Two output data formats are supported – 2s complement and offset binary. They can be selected using the parallel control pin SEN or the serial interface register bit **<DATA FORMAT>** (see Table 10).

Output Timings

The tables below show the timings at lower sampling frequencies.

Table 17. Timing Characteristics at Lower Sampling Frequencies (1) (2)

F _s , MSPS	t _{su} DATA SETUP TIME, ns			t _h DATA HOLD TIME, ns			t _{PDI} CLOCK PROPAGATION DELAY, ns		
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
CMOS INTERFA	CE, DRVDD = 2	2.5 V to 3.3 V							
40		12.8			11.2			6.5	
20		25			23				
10		50			48				
DDR LVDS INTE	RFACE, DRVD	D = 3.3 V							
40		10.8			1.7			5.8	
20		23			1.7			6.5	
10		48			1.7			6.5	

⁽¹⁾ Timing parameters are specified by design and not tested in production.

⁽²⁾ Timings are specified with default output buffer drive strength and $C_L = 5 pF$.

BOARD DESIGN CONSIDERATIONS

Grounding

A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of the board are cleanly partitioned. See the EVM User Guide (SLWU028) for details on layout and grounding.

Supply Decoupling

As the ADS6142 already includes internal decoupling, minimal external decoupling can be used without loss in performance. Note that decoupling capacitors can help filter external power supply noise, so the optimum number of capacitors would depend on the actual application. The decoupling capacitors should be placed very close to the converter supply pins.

It is recommended to use separate supplies for the analog and digital supply pins to isolate digital switching noise from sensitive analog circuitry. In case only a single 3.3-V supply is available, it should be routed first to AVDD. It can then be tapped and isolated with a ferrite bead (or inductor) with decoupling capacitor, before being routed to DRVDD.

Exposed Thermal Pad

It is necessary to solder the exposed pad at the bottom of the package to a ground plane for best thermal performance. For detailed information, see application notes **QFN Layout Guidelines** (SLOA122) and **QFN/SON PCB Attachment** (SLUA271).

www.ti.com.cn ZHCS611 – DECEMBER 2011

DEFINITION OF SPECIFICATIONS

Analog Bandwidth

The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low frequency value.

Aperture Delay

The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs.

Aperture Uncertainty (Jitter)

The sample-to-sample variation in aperture delay.

Clock Pulse Width/Duty Cycle

The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.

Maximum Conversion Rate

The maximum sampling rate at which certified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted.

Minimum Conversion Rate

The minimum sampling rate at which the ADC functions.

Differential Nonlinearity (DNL)

An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.

Integral Nonlinearity (INL)

The INL is the deviation of the ADC's transfer function from a best fit line determined by a least squares curve fit of that transfer function, measured in units of LSBs.

Gain Error

The gain error is the deviation of the ADC's actual input full-scale range from its ideal value. The gain error is given as a percentage of the ideal input full-scale range.

Offset Error

The offset error is the difference, given in number of LSBs, between the ADC's actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into mV.

Temperature Drift

The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from T_{MIN} to T_{MAX} . It is calculated by dividing the maximum deviation of the parameter across the T_{MIN} to T_{MAX} range by the difference T_{MAX} – T_{MIN} .

TEXAS INSTRUMENTS

Signal-to-Noise Ratio

SNR is the ratio of the power of the fundamental (P_S) to the noise floor power (P_N), excluding the power at dc and the first nine harmonics.

$$SNR = 10Log^{10} \frac{P_S}{P_N}$$
 (3)

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.

Signal-to-Noise and Distortion (SINAD)

SINAD is the ratio of the power of the fundamental (P_S) to the power of all the other spectral components including noise (P_N) and distortion (P_D) , but excluding dc.

$$SINAD = 10Log^{10} \frac{P_S}{P_N + P_D}$$
(4)

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.

Effective Number of Bits (ENOB)

The ENOB is a measure of a converter's performance as compared to the theoretical limit based on quantization noise.

$$ENOB = \frac{SINAD - 1.76}{6.02} \tag{5}$$

Total Harmonic Distortion (THD)

THD is the ratio of the power of the fundamental (P_S) to the power of the first nine harmonics (P_D).

$$THD = 10Log^{10} \frac{P_S}{P_N}$$
 (6)

THD is typically given in units of dBc (dB to carrier).

Spurious-Free Dynamic Range (SFDR)

The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).

Two-Tone Intermodulation Distortion

IMD3 is the ratio of the power of the fundamental (at frequencies f1 and f2) to the power of the worst spectral component at either frequency 2f1–f2 or 2f2–f1. IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.

DC Power Supply Rejection Ratio (DC PSRR)

The DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. The DC PSRR is typically given in units of mV/V.

ZHCS611 - DECEMBER 2011 www.ti.com.cn

AC Power Supply Rejection Ratio (AC PSRR)

AC PSRR is the measure of rejection of variations in the supply voltage of the ADC. If ΔV_{SUP} is the change in the supply voltage and ΔV_{OUT} is the resultant change in the ADC output code (referred to the input), then

PSRR =
$$20 \text{Log}^{10} \frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{SUP}}}$$
 (Expressed in dBc) (7)

Common-Mode Rejection Ratio (CMRR)

CMRR is the measure of rejection of variations in the input common-mode voltage of the ADC. If ΔV cm is the change in the input common-mode voltage and ΔV_{OUT} is the resultant change in the ADC output code (referred to the input), then

CMRR =
$$20 \text{Log}^{10} \frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{CM}}}$$
 (Expressed in dBc) (8)

Voltage Overload Recovery

The number of clock cycles taken to recover to less than 1% error for a 6-dB overload on the analog inputs. A 6-dBFS sine wave at Nyquist frequency is used as the test stimulus.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
ADS6142SKGD1	ACTIVE	XCEPT	KGD	0	121	RoHS & Green	Call TI	N / A for Pkg Type	-40 to 210		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司