DCK PACKAGE

(TOP VIEW)

GND □ 2

www.ti.com.cn ZHCS101 – 3 月 2011 年

单通道 3 输入正与门

查询样品: SN74LVC1G11-Q1

特性

- 符合汽车应用要求
- 支持 5 V V_{CC} 工作
- 允许接受输入电压: 5.5 V
- 3.3 V 电压下 4.1 ns 的最大 t_{pd}
- 低功耗、10 µA 的最大 lcc
- 3.3 V 电压下 ±24 mA 的输出驱动器
- loff 支持部分断电模式工作

说明 / 订购信息

SN74LVC1G11-Q1 在正逻辑中实施布尔函数 $Y = A \cdot B \cdot C$ or $Y = \overline{A + B + C}$ 。

该器件专用于采用 I_{off}的部分关断应用。 I_{off} 电路可禁用输出,能够防止在器件断电时电流回流对器件造成损坏。

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SOT (SC-70) – DCK	Reel of 3000	SN74LVC1G11IDCKRQ1	7LR

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ISTRUMENTS

ZHCS101 – 3 月 2011 年 www.ti.com.cn

FUNCTION TABLE

	INPUTS		OUTPUT
Α	В	С	Y
Н	Н	Н	Н
L	X	X	L
Χ	L	X	L
Χ	X	L	L

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	-0.5	6.5	V	
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the hi	-0.5	6.5	V	
Vo	Voltage range applied to any output in the hi	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	•		±50	mA
	Continuous current through V _{CC} or GND		±100	mA	
θ_{JA}	Package thermal impedance (4)		259	°C/W	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com.cn ZHCS101 – 3 月 2011 年

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
.,	Committee	Operating	1.65	5.5	V
V_{CC}	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
.,	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
.,	Lave laved Samuel coding	V _{CC} = 2.3 V to 2.7 V		0.7	.,
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		0.8	V
		V _{CC} = 4.5 V to 5.5 V		0.3 × V _{CC}	
VI	Input voltage	·	0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		$V_{CC} = 1.65 \text{ V}$ $V_{CC} = 2.3 \text{ V}$		-4	
				-8	
I_{OH}	High-level output current	V 0.V		-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V			
I_{OL}	Low-level output current	V 0.V		16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V		32	
		V _{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		ns/V	
		V _{CC} = 5 V ± 0.5 V		10	
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

ZHCS101 – 3 月 2011 年 www.ti.com.cn

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾ MAX	UNIT		
	$I_{OH} = -100 \ \mu A$	1.65 V to 5.5 V	V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
V _{OH} V _{OL} I _I All inputs	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9	V		
	$I_{OH} = -16 \text{ mA}$	3 V	2.4	V		
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V	0.1			
	I _{OL} = 4 mA	1.65 V	0.45			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I _{OL} = 8 mA	2.3 V	0.3	V		
VOL	I _{OL} = 16 mA	2.1/	0.4	V		
	I _{OL} = 24 mA	3 V	0.55			
	I _{OL} = 32 mA	4.5 V	0.55			
I _I All inputs	V _I = 5.5 V or GND	0 to 5.5 V	±5	μΑ		
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0	±10	μΑ		
I _{cc}	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V	10	μΑ		
ΔI _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V	500	μΑ		
C _i	$V_I = V_{CC}$ or GND	3.3 V	3.5	pF		

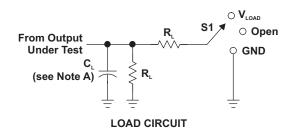
⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Switching Characteristics

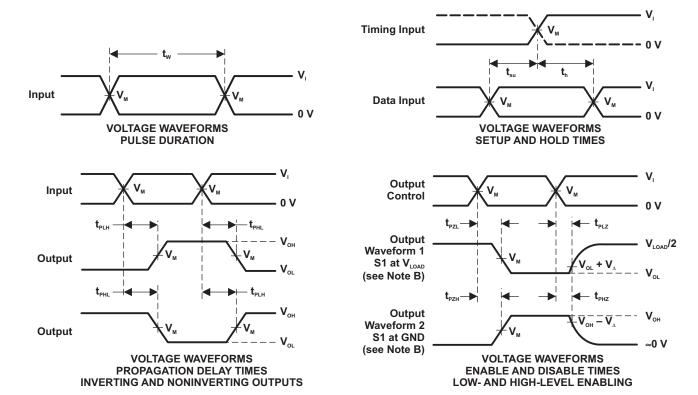
over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ	2.9	17.2	1.4	6.2	1.3	4.9	1	3.5	ns

Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT
C_{pd}	Power dissipation capacitance	f = 10 MHz	18	19	20	23	pF


www.ti.com.cn ZHCS101 – 3 月 2011 年

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

V	INI	PUTS		v		_	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~V~\pm~0.2~V$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3~V~\pm~0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $\dot{t}_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}$.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

重要声明

德州仪器 (TI) 及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权随时中止提供任何产品和服务。 客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。 所有产品的 销售都遵循在订单确认时所提供的 TI 销售条款与条件。

TI 保证其所销售的硬件产品的性能符合 TI 标准保修的适用规范。 仅在 TI 保修的范围内,且 TI 认为有必要时才会使用测试或其它质 量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。 客户应对其使用 TI 组件的产品和应用自行负责。 为尽量减小与客户产品和应用相关 的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 产品或服务的组合设备、机器、流程相关的 TI 知识产权中授予的直接或隐含权限作出任何保证或解释。 TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服务的许可、授权、或认可。 使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许

对于 TI 的数据手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。 在复制 信息的过程中对内容的篡改属于非法的、欺诈性商业行为。 TI 对此类篡改过的文件不承担任何责任。

在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示授权,且这是非法的、 欺诈性商业行为。 TI 对此类虚假陈述不承担任何责任。

可访问以下 URL 地址以获取有关其它 TI 产品和应用解决方案的信息:

产品

放大器 http://www.ti.com.cn/amplifiers 数据转换器 http://www.ti.com.cn/dataconverters

DSP http://www.ti.com.cn/dsp 接口 http://www.ti.com.cn/interface 逻辑 http://www.ti.com.cn/logic

http://www.ti.com.cn/power http://www.ti.com.cn/microcontrollers 微控制器

应用

电源管理

音频 http://www.ti.com.cn/audio 汽车 http://www.ti.com.cn/automotive 宽带 http://www.ti.com.cn/broadband 数字控制 http://www.ti.com.cn/control

光纤网络 http://www.ti.com.cn/opticalnetwork

安全 http://www.ti.com.cn/security http://www.ti.com.cn/telecom 电话 视频与成像 http://www.ti.com.cn/video 无线 http://www.ti.com.cn/wireless

> 邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LVC1G11IDCKRQ1	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	7LR	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

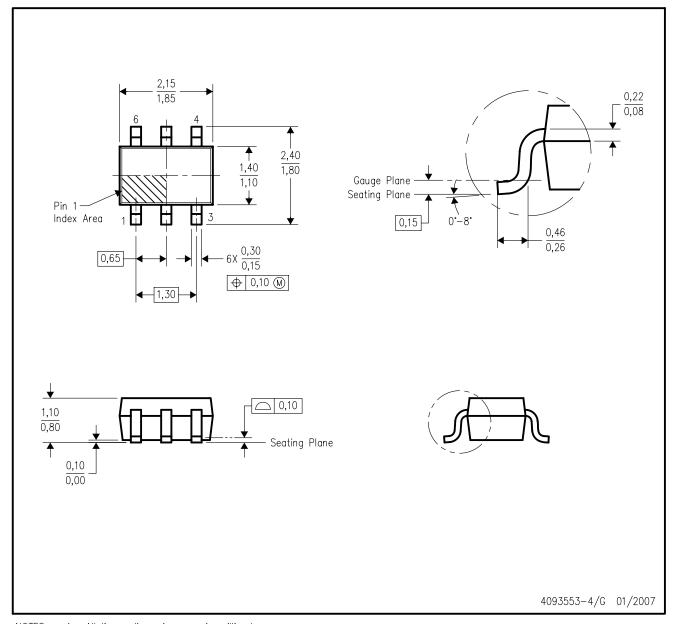
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

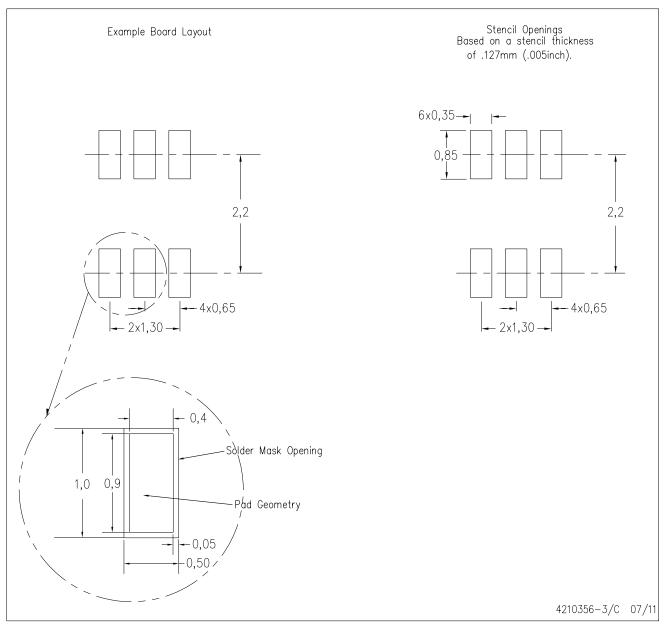

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司