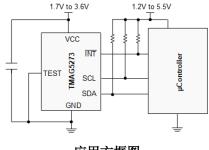


TMAG5273

ZHCSLX6A - JUNE 2021 - REVISED SEPTEMBER 2021


TMAG5273 具有 I²C 接口的低功耗线性 3D 霍尔效应传感器

1 特性

- 可配置的电源模式,包括:
 - 2.3mA 工作模式电流
 - 1µA 唤醒和睡眠模式电流
 - 5nA 休眠模式电流
- X、Y或Z轴上可选择的线性磁范围:
 - TMAG5273x1 : ±40mT , ±80mT
 - TMAG5273x2 : ±133mT , ±266mT
- 来自用户定义的磁性和温度阈值交叉的中断信号
- 灵敏度漂移为 5% (典型值)
- 具有增益和偏轴调节的集成角 CORDIC 计算
- 单轴转换率为 20kSPS
- 高达 32 倍的可配置取平均,支持降噪
- 由 I²C 或专用 INT 引脚触发转换
- 具有循环冗余校验 (CRC) 功能的优化 I²C 接口:
 - 最大 1MHz I²C 时钟速度
 - 专用 I²C 帧读取以提高吞吐量
 - 出厂编程和用户可配置的 I²C 地址
 - 多种磁体类型的集成温度补偿
- 内置温度传感器
- 1.7V 至 3.6V 电源电压 V_{CC} 范围
- 工作温度范围: -40℃ 至 +125℃ •

2 应用

- 电表
- 电子智能锁
- 智能恒温器
- 游戏手柄和游戏控制器
- ٠ 无人机有效载荷控制
- 门窗传感器
- 磁接近传感器 ٠
- 移动机器人电机控制
- 电动自行车

应用方框图

3 说明

TMAG5273 是一款低功耗线性 3D 霍尔效应传感器, 适用于各种工业和个人电子产品应用。此器件在 X、Y 和 Z 轴集成三个独立的霍尔效应传感器。精密模拟信 号链和集成的 12 位 ADC 使测量的模拟磁场值数字 化。支持多个工作 V_{CC} 范围时,I²C 接口可确保使用低 电压微控制器实现无缝的数据通信。该器件具有集成的 温度传感器,可用于多种系统功能,例如给定磁场的热 预算检查或温度补偿计算。

可以通过 I²C 接口来配置 TMAG5273,以实现磁轴和 温度测量的任意组合。此外,该器件可以配置为各种电 源选项(包括唤醒和睡眠模式),从而让设计人员能够 根据其系统级需要优化系统功耗。多个传感器转换方案 和 I²C 读取帧有助于优化吞吐量和准确性。专用的 INT 引脚可以在低功耗唤醒和睡眠模式期间充当系统中断, 也可以被微控制器用来触发新的传感器转换。

集成角度计算引擎 (CORDIC) 为同轴和离轴角度测量 拓扑提供完整的 360° 角度位置信息。使用用户选择的 两个磁轴执行角度计算。该器件具有磁增益和偏轴校正 功能,可减轻系统机械误差源的影响。

TMAG5273 具有四个不同的出厂编程 I²C 地址。通过 修改用户可配置的 I²C 地址寄存器,该器件还支持其他 I²C 地址。每个可订购器件可配置为选择在系统校准期 间适合磁体强度和元件放置的两个磁场范围之一。

该器件在 -40℃ 至 +125℃ 的宽环境温度范围内能够 保持稳定一致的优异性能。

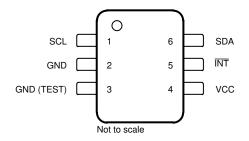
器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
TMAG5273	DBV (6)	2.90mm × 1.60mm

如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

Table of Contents

1	特性	1
	应用	
3	说明	1
	Revision History	
	Pin Configuration and Functions	
	Specifications	
	6.1 Absolute Maximum Ratings	
	6.2 ESD Ratings	4
	6.3 Recommended Operating Conditions	
	6.4 Thermal Information	4
	6.5 Electrical Characteristics	<mark>5</mark>
	6.6 Temperature Sensor	
	6.7 Magnetic Characteristics For A1	6
	6.8 Magnetic Characteristics For A2	7
	6.9 Magnetic Temp Compensation Characteristics .	<mark>8</mark>
	6.10 I2C Interface Timing	
	6.11 Power up & Conversion Time	8
	6.12 Typical Characteristics	9
7	Detailed Description	10
	7.1 Overview	10
	7.2 Functional Block Diagram	10


7.3 Feature Description	10
7.4 Device Functional Modes	
7.5 Programming	
7.6 Register Map	25
8 Application and Implementation	
8.1 Application Information	
8.2 Typical Application	
8.3 What to Do and What Not to Do	47
9 Power Supply Recommendations	
10 Layout	48
10.1 Layout Guidelines	
10.2 Layout Example	48
11 Device and Documentation Support	49
11.1 Documentation Support	49
11.2 接收文档更新通知	49
11.3 支持资源	49
11.4 Trademarks	
11.5 Electrostatic Discharge Caution	
11.6 术语表	
12 Mechanical, Packaging, and Orderable	
Information	49

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

Cł	nanges from Rev	vision * (Jun	ie 2021)	to Revision	A (September 2021) Pa	ge
•	将数据表状态从	"预告信息"	更改为	"量产数据"		1

5 Pin Configuration and Functions

图 5-1. DBV Package, 6-Pin SOT-23 (Top View)

表 5-1. Pin Functions

PIN		ТҮРЕ	DESCRIPTION	
NAME	NO.	ITFE	DESCRIPTION	
SCL	1	IO	Serial clock.	
GND	2	Ground	Ground reference.	
GND (TEST)	3	Input	TI Test Pin. Connect to ground in application.	
VCC	4	Power supply	Power supply.	
INT	5	IO	Interrupt input/ output. If not used and connected to ground, set MASK_INTB = 1b.	
SDA	6	IO	Serial data.	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Main supply voltage	- 0.3	4	V
I _{OUT}	Output current, SDA, INT	0	10	mA
V _{OUT}	Output voltage, SDA, INT	- 0.3	7	V
V _{IN}	Input voltage, SCL, SDA, INT	- 0.3	7	V
B _{MAX}	Magnetic flux density		Unlimited	Т
TJ	Junction temperature	- 40	150	°C
T _{stg}	Storage temperature	- 65	170	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V		Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _(ESD)		Charged device model (CDM), per JEDEC specification JS-002, all pins ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) over recommended V_{CC} range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{CC}	Main supply voltage	1.7	3.6	V
V _{OUT}	Output voltage, SDA, INT	0	5.5	V
I _{OUT}	Output current, SDA, INT		2	mA
V _{IH}	Input HIGH voltage, SCL, SDA, INT	0.7		V _{CC}
V _{IL}	Input LOW voltage, SCL, SDA, INT		0.3	V _{CC}
$\Delta V_{CC}/ \Delta t^{(1)}$	Supply voltage ramp rate	3		V/ms
T _A	Operating free air temperature	- 40	125	°C

(1) If the VCC ramp rate is slower than the recommended supply voltage ramp rate, run a wake-up and sleep cycle after power-up or power-up reset to avoid I2C address glitch during sleep mode. This action is not required while operating in stand-by or continuous modes.

6.4 Thermal Information

		TMAG5273	
THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	UNIT
		6 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	162	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	81.6	°C/W
R _{0 JB}	Junction-to-board thermal resistance	50.1	°C/W

THERMAL METRIC ⁽¹⁾		TMAG5273	
		DBV (SOT-23)	UNIT
		6 PINS	
ΨJT	Junction-to-top characterization parameter	30.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	49.8	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

over recommended V_{CC} range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SDA, INT		· · · · · · · · · · · · · · · · · · ·				
V _{OL}	Output LOW voltage, SDA, INT pin	I _{OUT} = 2mA	0		0.4	V
I _{OZ}	Output leakage current, SDA, INT pin	Output disabled, V _{OZ} = 5.5V			±100	nA
t _{FALL_INT}	INT output fall time	$R_{PU} = 10K \Omega$, $C_L = 20pF$, $V_{PU} = 1.65V$ to 5.5V		6		ns
t _{int (int)}	INT Interrupt time duration during pulse mode	INT_MODE =001b or 010b		10		μs
t _{INT (SCL)}	SCL Interrupt time duration	INT_MODE =011b or 100b		10		μs
DC POWER SEC	CTION				I	
VCC _{UV} ⁽¹⁾	Under voltage threshold at V_{CC}	V _{CC} = 2.3V to 3.6V	1.9	2.0	2.2	V
I _{ACTIVE}	Active mode current	X, Y, Z, or thermal sensor active conversion, LP_LN =0b		2.3		mA
I _{ACTIVE}	Active mode current	X, Y, Z, or thermal sensor active conversion, LP_LN =1b		3.0		mA
ISTANDBY	Stand-by mode current	Device in trigger mode, no conversion started		0.45		mA
I _{SLEEP}	Sleep mode current			5		nA
AVERAGE POW	ER DURING WAKE-UP AND SLEEP (W&	S) MODE				
I _{CC_DCM_1000_1}	W&S mode current consumption	Wake-up interval 1-ms, magnetic 1-ch conversion, LP_LN =0b, V _{CC} =3.3V		160		μA
ICC_DCM_1000_1	W&S mode current consumption	Wake-up interval 1-ms, magnetic 1-ch conversion, LP_LN =0b, V _{CC} =1.8V		156		μA
I _{CC_DCM_1000_4}	W&S mode current consumption	Wake-up interval 1-ms, 4-ch conversion, LP_LN =0b, V _{CC} =3.3V		240		μA
I _{CC_DCM_1000_4}	W&S mode current consumption	Wake-up interval 1-ms, 4-ch conversion, LP_LN =0b, V _{CC} =1.8V		233		μA
I _{CC_DCM_0p2_1}	W&S mode current consumption	Wake-up interval 5000-ms, magnetic 1-ch conversion, LP_LN =0b, V _{CC} =3.3V		1.21		μA
I _{CC_DCM_0p2_1}	W&S mode current consumption	Wake-up interval 5000-ms, magnetic 1-ch conversion, LP_LN =0b, V _{CC} =1.8V		1.00		μA
I _{CC_DCM_0p2_4}	W&S mode current consumption	Wake-up interval 5000-ms, 4-ch conversion, LP_LN =0b, V _{CC} =3.3V		1.22		μA
I _{CC_DCM_0p2_4}	W&S mode current consumption	Wake-up interval 5000-ms, 4-ch conversion, LP_LN =0b, V _{CC} =1.8V		1.02		μA

(1) The DIAG_STATUS and VCC_UV_ER bits are not valid for V_{CC} < 2.3V

6.6 Temperature Sensor

over operating free-air temperature range (unless otherwise noted) over recommended V_{CC} range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SENS_RANGE}	Temperature sensing range		- 40		170 <mark>(1)</mark>	°C
T _{ADC_T0}	Temperature result in decimal value (from 16-bit format) for T _{SENS_T0}			17508		
T _{SENS_T0}	Reference temperature for T_{ADC_T0}			25		°C
T _{ADC_RES}	Temp sensing resolution (in 16-bit format)			60.1		LSB/℃
NRMS_T	RMS (1 Sigma) temperature noise	CONV_AVG = 000b		0.4		°C
NRMS_T	RMS (1 Sigma) temperature noise	CONV_AVG = 101b		0.2		°C

(1) TI recommends not to exceed the specified operating free air temperature per the Recommended Operating Conditions table

6.7 Magnetic Characteristics For A1

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
B _{IN_A1_X_Y}	Linear magnetic range	X_Y_RANGE =0b	±40		mT
B _{IN_A1_X_Y}	Linear magnetic range	X_Y_RANGE =1b	±80		mT
B _{IN_A1_Z}	Linear magnetic range	Z_RANGE =0b	±40		mT
B _{IN_A1_Z}	Linear magnetic range	Z_RANGE =1b	±80		mT
SENS _{40_A1}	Sensitivity, X, Y, or Z axis	±40 mT range	820		LSB/mT
SENS _{80_A1}	Sensitivity, X, Y, or Z axis	±80 mT range	410		LSB/mT
SENS _{ER_PC_25C_A1}	Sensitivity error, X, Y, Z axis	TA =25C	±5.0%	±20.0%	
SENS _{ER_PC_TEMP_A1}	Sensitivity drift from 25C, X, Y, Z axis		±5.0%		
SENS _{LER_XY_A1}	Sensitivity Linearity Error, X, Y-axis	TA =25C	±0.10%		
SENS _{LER_Z_A1}	Sensitivity Linearity Error, Z axis	TA =25C	±0.10%		
SENS _{MS_XY_A1}	Sensitivity mismatch among X-Y axes	TA =25C	±0.50%		
SENS _{MS_Z_A1}	Sensitivity mismatch among Y-Z, or X- Z axes	TA =25C	±1.0%		
SENS _{MS_DR_XY_A1}	Sensitivity mismatch drift X-Y axes		±5%		
SENS _{MS_DR_Z_A1}	Sensitivity mismatch drift Y-Z, or X-Z axes		±15%		
B _{off_A1}	Offset	TA =25C	±300	±1000	μT
B _{off_TC_A1}	Offset drift		±3.0	±10.0	µT/°C
N _{RMS_XY_00_000_A1}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =0b, CONV_AVG = 000, TA =25C	125		μT
N _{RMS_XY_01_000_A1}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =1b, CONV_AVG = 000, TA =25C	110		μT
N _{RMS_XY_00_101_A1}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =0b, CONV_AVG = 101, TA =25C	22		μT
N _{RMS_XY_01_101_A1}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =1b, CONV_AVG = 101, TA =25C	22		μT
N _{RMS_Z_00_000_A1}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =0b, CONV_AVG = 000, TA =25C	68		μT
N _{RMS_Z_01_000_A1}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =1b, CONV_AVG = 000, TA =25C	66		μT
N _{RMS_Z_00_101_A1}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =0b, CONV_AVG = 101, TA =25C	11		μT
N _{RMS_Z_01_101_A1}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =1b, CONV_AVG = 101, TA =25C	9		μT

over operating free-air temperature range (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
A _{ERR_Y_Z_101_A1_25}	Y-Z Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C		±1.0		Degree
A _{ERR_X_Z_101_A1_25}	X-Z Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C		±1.0		Degree
A _{ERR_X_Y_101_A1_25}	X-Y Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C		±0.5		Degree

6.8 Magnetic Characteristics For A2

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
B _{IN_A2_X_Y}	Linear magnetic range	X_Y_RANGE =0b	±133		mT
B _{IN_A2_X_Y}	Linear magnetic range	X_Y_RANGE =1b	±266		mT
B _{IN_A2_Z}	Linear magnetic range	Z_RANGE =0b	±133		mT
B _{IN_A2_Z}	Linear magnetic range	Z_RANGE =1b	±266		mT
SENS _{133_A2}	Sensitivity, X, Y, or Z axis	±133 mT range	250		LSB/mT
SENS _{266_A2}	Sensitivity, X, Y, or Z axis	±266 mT range	125		LSB/mT
SENS _{ER_PC_25C_A2}	Sensitivity error, X, Y, Z axis	TA = 25C	±5.0%	±20.0%	
SENS _{ER_PC_TEMP_A2}	Sensitivity drift from 25C, X, Y, Z axis		±5.0%		
SENS _{LER_XY_A2}	Sensitivity Linearity Error, X, Y-axis	TA =25C	±0.10%		
SENS _{LER_Z_A2}	Sensitivity Linearity Error, Z axis	TA =25C	±0.10%		
SENS _{MS_XY_A2}	Sensitivity mismatch among X-Y axes	TA =25C	±0.50%		
SENS _{MS_Z_A2}	Sensitivity mismatch among Y-Z, or X-Z axes	TA =25C	±1.0%		
SENS _{MS_DR_XY_A2}	Sensitivity mismatch drift X-Y axes		±5%		
SENS _{MS_DR_Z_A2}	Sensitivity mismatch drift Y-Z, or X-Z axes		±15%		
B _{off_A2}	Offset	TA =25C	±300	±1000	μT
B _{off_TC_A2}	Offset drift		±3.0	±10	μT/°C
N _{RMS_XY_00_000_A2}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =0b, CONV_AVG = 000, TA =25C	147		μT
N _{RMS_XY_01_000_A2}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =1b, CONV_AVG = 000, TA =25C	145		μΤ
N _{RMS_XY_01_101_A2}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =0b, CONV_AVG = 101, TA =25C	24		μT
N _{RMS_XY_10_101_A2}	RMS (1 Sigma) magnetic noise (X or Y-axis)	LP_LN =1b, CONV_AVG = 101, TA =25C	24		μT
N _{RMS_Z_00_000_A2}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =0b, CONV_AVG = 000, TA =25C	89		μT
N _{RMS_Z_10_000_A2}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =1b, CONV_AVG = 000, TA =25C	88		μΤ
N _{RMS_Z_00_101_A2}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =0b, CONV_AVG = 101, TA =25C	15		μΤ
N _{RMS_Z_10_101_A2}	RMS (1 Sigma) magnetic noise (Z axis)	LP_LN =1b, CONV_AVG = 101, TA =25C	15		μT
A _{ERR_Y_Z_101_A2}	Y-Z Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C	±1.0		Degree
A _{ERR_X_Z_101_A2}	X-Z Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C	±1.0		Degree

over operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
A _{ERR_X_Y_101_A2}	X-Y Angle error in full 360 degree rotation	CONV_AVG = 101, TA =25C		±0.50		Degree

6.9 Magnetic Temp Compensation Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
TC_00	Temperature compensation (X, Y, Z-axes)	MAG_TEMPCO =00b	0		%/°C
TC_12	Temperature compensation (X, Y, Z-axes)	MAG_TEMPCO =01b	0.12		%/°C
TC_20	Temperature compensation (X, Y, Z-axes)	MAG_TEMPCO =11b	0.2		%/°C

6.10 I2C Interface Timing

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I2C Interface	Fast Mode Plus (V _{CC} =2.3V to 3.6V)				1	
f _{I2C_fmp}	I2C clock (SCL) frequency	LOAD = 50 pF, V _{CC} =2.3V to 3.6V			1000	KHz
t _{whigh_fmp}	High time: SCL logic high time duration		350			ns
t _{wlo_wfmp}	Low time: SCL logic low time duration		500			ns
t _{su_cs_fmp}	SDA data setup time		50			ns
t _{h_cs_fmp}	SDA data hold time		120			ns
t _{icr_fmp}	SDA, SCL input rise time				120	ns
t _{icf_fmp}	SDA, SCL input fall time				55	ns
t _{h_ST_fmp}	Start condition hold time		0.1			μs
t _{su_SR_fmp}	Repeated start condition setup time		0.1			μs
t _{su_SP_fmp}	Stop condition setup time		0.1			μs
t _{w_SP_SR_fmp}	Bus free time between stop and start condition		0.2			μs
	Fast Mode (V _{CC} =1.7V to 3.6V)		1		I	
f _{I2C}	I2C clock (SCL) frequency	LOAD = 50 pF, V _{CC} =1.7V to 3.6V			400	KHz
t _{whigh}	High time: SCL logic high time duration		600			ns
t _{wlow}	Low time: SCL logic low time duration		1300			ns
t _{su_cs}	SDA data setup time		100			ns
t _{h_cs}	SDA data hold time		0			ns
t _{icr}	SDA, SCL input rise time				300	ns
t _{icf}	SDA, SCL input fall time				300	ns
t _{h_ST}	Start condition hold time		0.3			μs
t _{su_SR}	Repeated start condition setup time		0.3			μs
t _{su_SP}	Stop condition setup time		0.3			μs
t _{w_SP_SR}	Bus free time between stop and start condition		0.6			μs
	1		1			

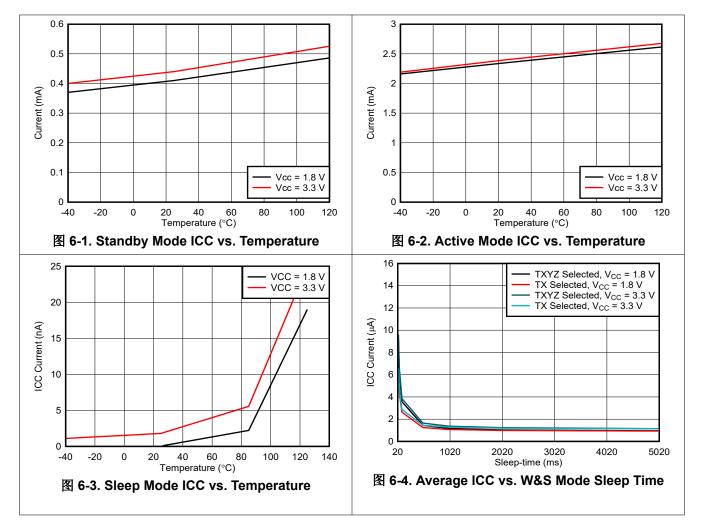
6.11 Power up & Conversion Time

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{start_power_up}	Time to go to stand-by mode after V_{CC} supply voltage crossing V_{CC_MIN}			270		μs
t _{start_sleep}	Time to go to stand-by mode from sleep mode ⁽¹⁾			50		μs

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{start_measure}	Time to go into continuous measure mode from stand-by mode			70		μs
t _{measure}	Conversion time ⁽²⁾	CONV_AVG = 000b, OPERATING_MODE =10b, only one channel enabled		50		μs
t _{measure}	Conversion time ⁽³⁾	CONV_AVG = 101b, OPERATING_MODE =10b, only one channel enabled		825		μs
t _{go_sleep}	Time to go into sleep mode after SCL goes high			20		μs


(1) The device will recognize the I2C communication from a primary only during stand-by or continuous measure modes. While the device is in sleep mode, a valid secondary address will wake up the device but no acknowledge will be sent to the primary. Start up time must be considered before addressing the device after wake up.

(2) Add 25µs for each additional magnetic channel enabled for conversion with CONV_AVG = 000b. When CONV_AVG = 000b, the conversion time doesn't change with the T_CH_EN bit setting.

(3) For conversion with CONV_AVG =101b, each channel data is collected 32 times. If an additional channel is enabled with CONV_AVG =101b, add 32×25µs = 800µs to the t_{measure} to calculate the conversion time for two channels.

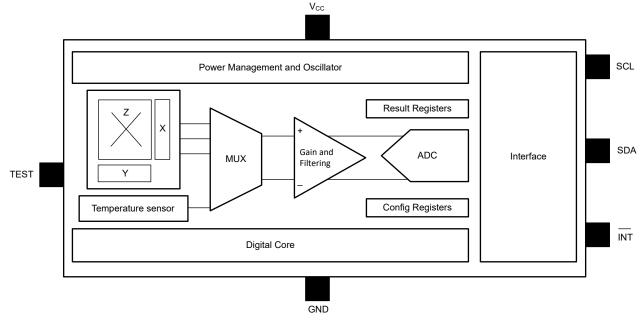
6.12 Typical Characteristics

at T_A = 25°C typical (unless otherwise noted)

7 Detailed Description

7.1 Overview

The TMAG5273 IC is based on the Hall-effect technology and precision mixed signal circuitry from Texas Instruments. The output signals (raw X, Y, Z magnetic data and temperature data) are accessible through the I^2C interface.


The IC consists of the following functional and building blocks:

• The Power Management & Oscillator block contains a low-power oscillator, biasing circuitry, undervoltage detection circuitry, and a fast oscillator.

• The sensing and temperature measurement block contains the Hall biasing, Hall sensors with multiplexers, noise filters, integrator circuit, temperature sensor, and the ADC. The Hall-effect sensor data and temperature data are multiplexed through the same ADC.

• The Interface block contains the I²C control circuitry, ESD protection circuits, and all the I/O circuits. The TMAG5273 supports multiple I²C read frames along with integrated cyclic redundancy check (CRC).

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Magnetic Flux Direction

As shown in 🕅 7-1, the TMAG5273 will generate positive ADC codes in response to a magnetic north pole in the proximity. Similarly, the TMAG5273 will generate negative ADC codes if magnetic south poles approach from the same directions.

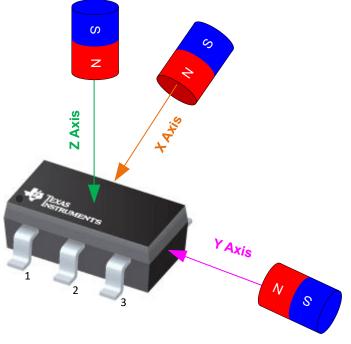


图 7-1. Direction of Sensitivity

7.3.2 Sensor Location

图 7-2 shows the location of X, Y, Z hall elements inside the TMAG5273.

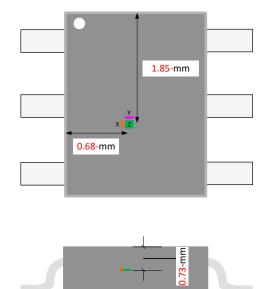


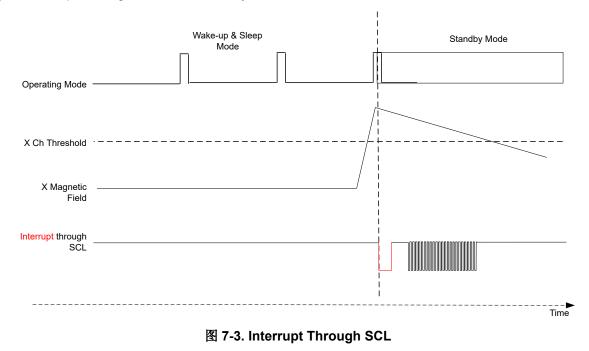
图 7-2. Location of X, Y, Z Hall Elements

7.3.3 Interrupt Function

The TMAG5273 supports flexible and configurable interrupt functions through either the \overline{INT} or the SCL pin. \overline{R} 7-1 shows different conversion completion events where result registers and SET_COUNT bits update, and where they do not.

Copyright © 2021 Texas Instruments Incorporated

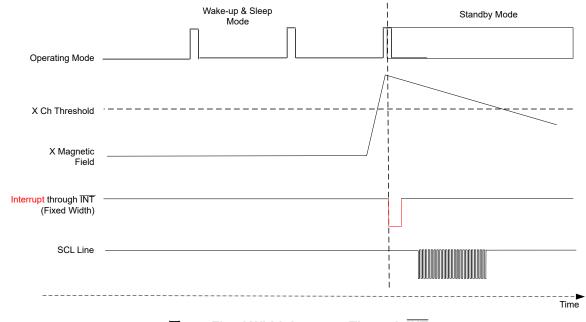
表 7-1. Result Register & SET_COUNT Update After Conversion Completion


INT_MODE	MODE	I ² C BUS BUSY, TO DEVICE	NOT TALKING	I ² C BUS BUSY DEVICE	& TALKING TO	I ² C BUS NOT BUSY	
	DESCRIPTION	RESULT UPDATE?	SET_COUNT UPDATE?	RESULT UPDATE?	SET_COUNT UPDATE?	RESULT UPDATE?	SET_COUNT UPDATE?
000b	No interrupt	Yes	Yes	No	No	Yes	Yes
001b	Interrupt through INT	Yes	Yes	No	No	Yes	Yes
010b	Interrupt through INT except when I ² C busy	Yes	Yes	No	No	Yes	Yes
011b	Interrupt through SCL	Yes	Yes	No	No	Yes	Yes
100b	Interrupt through SCL except when I ² C busy	No	No	No	No	Yes	Yes

Note

TI does not recommend sharing the same l^2C bus with multiple secondary devices when using the SCL pin for interrupt function. The SCL interrupt may corrupt transactions with other secondary devices if present in the same l^2C bus.

Interrupt Through SCL


Image 7-3 shows an example for interrupt function through the SCL pin with the device programmed to wake up and sleep mode for threshold cross at a predefined intervals. The wake-up intervals can be set through the SLEEPTIME bits. Once the magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the SCL pin, and goes back to stand-by mode.

Fixed Width Interrupt Through INT

[**7**-4 shows an example for fixed-width interrupt function through the INT pin. The device is programmed to be in wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 1b. Once the magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the INT pin, and goes back to stand-by mode.

图 7-4. Fixed Width Interrupt Through INT

Latched Interrupt Through INT

▼7-5 shows an example for latched interrupt function through the INT pin. The device is programmed to be in wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 0b. Once the magnetic threshold cross is detected, the device asserts a latched interrupt signal through the INT pin, and goes back to stand-by mode. The interrupt latch is cleared only after the device receives a valid address through the SCL line.

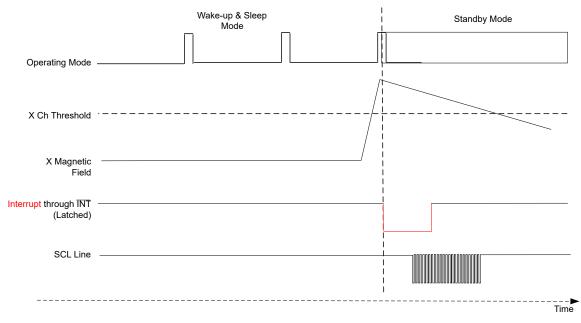


图 7-5. Latched Interrupt Through INT

7.3.4 Device I²C Address

7-2 shows the default factory programmed I²C addresses of the TMAG5273. The device needs to be addressed with the factory default I²C address after power up. If required, a primary can assign a new I²C address through the I2C_ADDRESS register bits after power up.

DEVICE VERSION	MAGNETIC RANGE	I ² C ADDRESS (7 MSB BITS)	I ² C WRITE ADDRESS (8-BIT)	I ² C READ ADDRESS (8- BIT)
TMAG5273A1		35h	6Ah	6Bh
TMAG5273B1	$\pm 40 \text{ mT} \pm 80 \text{ mT}$	22h	44h	45h
TMAG5273C1	±40 mT, ±80 mT	78h	F0h	F1h
TMAG5273D1		44h	88h	89h
TMAG5273A2		35h	6Ah	6Bh
TMAG5273B2	±133 mT, ±266 mT	22h	44h	45h
TMAG5273C2	±133 m1, ±200 m1	78h	F0h	F1h
TMAG5273D2	-	44h	88h	89h

表 7-2. I²C Default Address

7.3.5 Magnetic Range Selection

7-3 shows the magnetic range selection for the TMAG5273 device. The X, Y, and Z axes range can be selected with the X_Y_RANGE and Z_RANGE register bits.

	RANGE REGISTER SETTING	TMAG5273A1	TMAG5273A2	COMMENT		
X, Y Axis Field	X_Y_RANGE = 0b	±40-mT	±133-mT			
	X_Y_RANGE = 1b	±80-mT	±266-mT	Better SNR performance		
Z Axis Field	Z_RANGE = 0b	±40-mT	±133-mT			
Z AXIS FIEIU	Z_RANGE = 1b	±80-mT	±266-mT	Better SNR performance		

表 7-3. Magnetic Range Selection

7.3.6 Update Rate Settings

The TMAG5273 offers multiple update rates to offer design flexibility to system designers. The different update rates can be selected with the CONV_AVG register bits. 表 7-4 shows different update rate settings for the TMAG5273.

OPERATING	REGISTER SETTING	UPDATE RATE		UPDATE RATE		
MODE	REGISTER SETTING	SINGLE AXIS	TWO AXES	THREE AXES	COMMENT	
X, Y, Z Axis	CONV_AVG = 000b	20.0-kSPS	13.3-kSPS	10.0-kSPS	Fastest update rate	
X, Y, Z Axis	CONV_AVG = 001b	13.3-kSPS	8.0-kSPS	5.7-kSPS		
X, Y, Z Axis	CONV_AVG = 010b	8.0-kSPS	4.4-kSPS	3.1-kSPS		
X, Y, Z Axis	CONV_AVG = 011b	4.4-kSPS	2.4-kSPS	1.6-kSPS		
X, Y, Z Axis	CONV_AVG = 100b	2.4-kSPS	1.2-kSPS	0.8-kSPS		
X, Y, Z Axis	CONV_AVG = 101b	1.2-kSPS	0.6-kSPS	0.4-kSPS	Best SNR case	

表 7-4. Update Rate Settings

7.4 Device Functional Modes

The TMAG5273 supports multiple functional modes for wide array of applications as explained in ⊠ 7-6. A specific functional mode is selected by setting the corresponding value in the OPERATING_MODE register bits. The device starts powering up after VCC supply crosses the minimum threshold as specified in the Recommended Operating Condition (ROC) table.

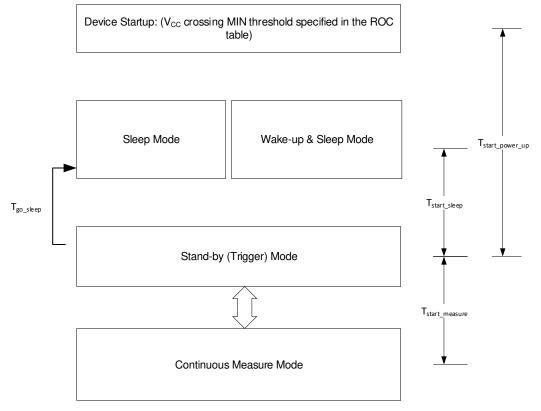
7.4.1 Stand-by (Trigger) Mode

The TMAG5273 goes to stand-by mode after first time powering up. At this mode the digital circuitry and oscillators are on, and the device is ready to accept commands from the primary device. Based off the commands the device can start a sensor data conversion, go to power saving mode, or start data transfer through I²C interface. A new conversion can be triggered through I²C command or through \overline{INT} pin. In this mode the device retains the immediate past conversion result data in the corresponding result registers. The time it takes for the device to go to stand-by mode from power up is denoted by T_{start power up}.

7.4.2 Sleep Mode

The TMAG5273 supports an ultra-low power sleep mode where it retains the critical user configuration settings. In this mode the device doesn't retain the conversion result data. A primary can wake up the device from sleep mode through I^2C communications or the \overline{INT} pin. The time it takes for the device to go to stand-by mode from sleep mode is denoted by $T_{\text{start sleep}}$.

7.4.3 Wake-up and Sleep (W&S) Mode


In this mode the TMAG5273 can be configured to go to sleep and wake up at a certain interval, and measure sensor data based off the SLEEPTIME register bits setting. The device can be set to generate an interrupt through the INT_CONFIG_1 register. Once the conversion is complete and the interrupt condition is met, the TMAG5273 will exit the W&S mode and go to the stand-by mode. The last measured data will be stored in the corresponding result registers before the device goes to the stand-by mode. If the interrupt condition isn't met,

the device will continue to be in the W&S mode to wake up and measure data at the specified interval. A primary can wake up the TMAG5273 anytime during the W&S mode through I²C bus or \overline{INT} pin. The time it takes for the device to go to stand-by mode from W&S mode is denoted by T_{start sleep}.

7.4.4 Continuous Measure Mode

In this mode the TMAG5273 continuously measures the sensor data per SENSOR_CONFIG & DEVICE_CONFIG register settings. In this mode the result registers can be accessed through the I2C lines. The time it takes for the device to go from stand-by mode to continuous measure mode is denoted by T_{start measure}.

图 7-6. TMAG5273 Power-Up Sequence

7-5 shows different device operational modes of the TMAG5273.

OPERATING MODE	DEVICE FUNCTION	ACCESS TO USER REGISTERS	RETAIN USER CONFIGURATION	COMMENT
Continuous Measure Mode	Continuously measuring x, y, z axis, or temperature data	Yes	Yes	
Stand-by Mode	Device is ready to accept I ² C commands and start active conversion	Yes	Yes	
Wake-up and Sleep Mode	Wakes up at a certain interval to measure the x, y, z axis, or temperature data	No	Yes	1, 5, 10, 15, 20, 30, 50, 100, 500, 1000, 2000, 5000, & 20000-ms intervals supported.
Sleep Mode	Device retains key configuration settings, but doesn't retain the measurement data	No	Yes	Sleep mode can be utilized by a primary device to implement other power saving intervals not supported by wake-up and sleep mode.

表 7-5. Operating Modes

7.5 Programming

7.5.1 I²C Interface

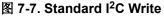
The TMAG5273 offers I²C interface, a two-wire interface to connect low-speed devices like microcontrollers, A/D and D/A converters, I/O interfaces and other similar peripherals in embedded systems.

7.5.1.1 SCL

SCL is the clock line. It is used to synchronize all data transfers over the I²C bus.

7.5.1.2 SDA

SDA is the bidirectional data line for the I^2C interface.


7.5.1.3 I²C Read/Write

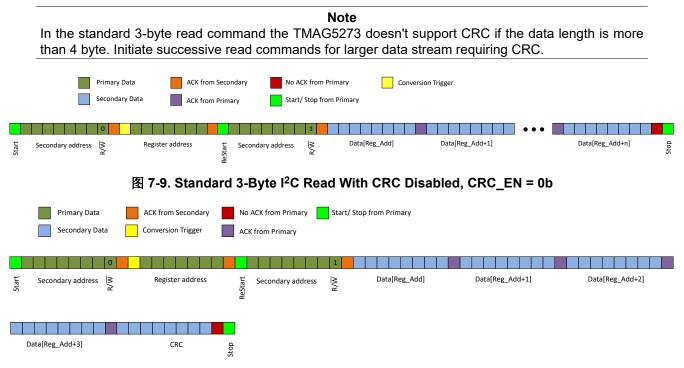
The TMAG5273 supports multiple I²C read and write frames targeting different applications. I2C_RD and CRC_EN bits offers multiple read frames to optimize the read time, data resolution and data integrity for a select application.

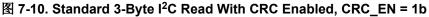
7.5.1.3.1 Standard I²C Write

 \mathbb{X} 7-7 shows an example of standard I²C two byte write command supported by TMAG5273. The starting byte contains 7-bit secondary device address and a '0' at the R/W command bit. The MSB of the second byte contains the conversion trigger bit. Writing '1' at this trigger bit will start a new conversion after the register address decoding is completed. The 7 LSB bits of the second byte contains the starting register address for the write command. After the two command bytes, the primary device starts to send the data to be written at the corresponding register address. Each successive write byte will send the data for the successive register address in the secondary device.

7.5.1.3.2 General Call Write

 \mathbb{X} 7-8 shows an example of the general call I²C write command supported by the TMAG5273. This command is useful to configure multiple I²C devices in a I²C bus simultaneously. The starting byte contains 8-bit '0's. The MSB of the second byte contains the conversion trigger bit. Writing '1' at this trigger bit will start a new conversion after the register address decoding is completed. The 7 LSB bits of the second byte contains the starting register address for the write command. After the two command bytes, the primary device starts to send the data to be written at the corresponding register address of all the secondary devices in the I²C bus. Each successive write byte will send the data for the successive register address in the secondary devices.




图 7-8. General Call I²C Write

7.5.1.3.3 Standard 3-Byte I²C Read

 \mathbb{X} 7-9 and \mathbb{X} 7-10 show examples of standard I²C three byte read command supported by the TMAG5273. The starting byte contains 7-bit secondary device address and the R/ \mathbb{W} command bit '0'. The MSB of the second byte contains the conversion trigger command bit. Writing '1' at this trigger bit will start a new conversion after the

register address decoding is completed. The 7 LSB bits of the second byte contains the starting register address for the write command. After receiving ACK signal from secondary, the primary send the secondary address once again with R/W command bit as '1'. The secondary starts to send the corresponding register data. It will send successive register data with each successive ACK from primary. If CRC is enabled, the secondary will send the fifth CRC byte based off the CRC calculation of immediate past 4 register bytes.

7.5.1.3.4 1-Byte I2C Read Command for 16-Bit Data

 \mathbb{X} 7-11 and \mathbb{X} 7-12 show examples of 1-byte I²C read command supported by the TMAG5273. Select I2C_RD =01b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at the R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 16-bit data of the enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet. When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data bytes.

I
I
1
1
1
1
•
Data[Z_LSB]
,
Data[Y_LSB]
0b
CRC
CRC
CRC Data[Z_LSB]
CRC
CRC Data[Z_LSB]
CRC Data[Z_LSB]

Note

In the 1-byte read command for 16-bit data only up to 3 channels data can be sent when CRC is enabled. This restriction doesn't apply if CRC is disabled.

7.5.1.3.5 1-Byte I²C Read Command for 8-Bit Data

[\boxtimes 7-13 and \boxtimes 7-14 show examples of 1-byte I²C read command supported by the TMAG5273. Select I2C_RD =10b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at the R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 8-bit data of the enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet. When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data bytes.

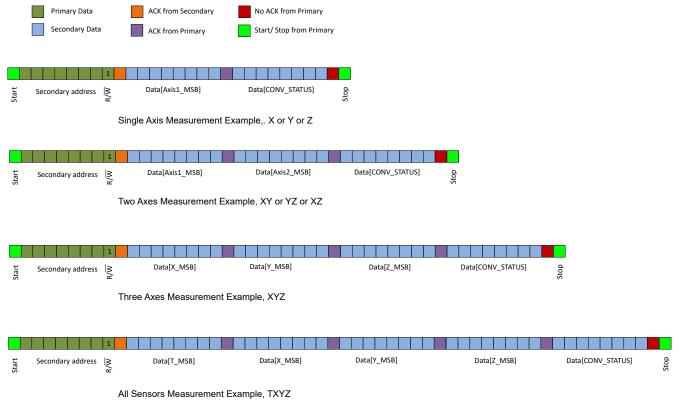


图 7-13. 1-Byte I²C Read Command for 8-Bit Data With CRC Disabled, CRC_EN = 0b

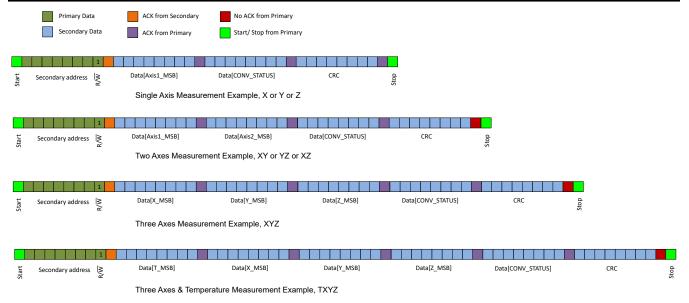


图 7-14. 1-Byte I²C Read Command for 8-Bit Data With CRC Enabled, CRC_EN = 1b

Note					
In the 1-byte read c	command for 8-bit	data any combinations	of channels can be	e sent without	
restrictions.					

7.5.1.3.6 I²C Read CRC

The TMAG5273 supports optional CRC during I²C read. The CRC can be enabled through the CRC_EN register bit. The CRC is performed on a data string that is determined by the I²C read type. The CRC information is sent as a single byte after the data bytes. The code is generated by the polynomial $x^8 + x^2 + x + 1$. Initial CRC bits are FFh.

The following equations can be employed to calculate CRC:

d = Data Input, c = Initial CRC (FFh)	(1)
newcrc[0] = d[7] ^ d[6] ^ d[0] ^ c[0] ^ c[6] ^ c[7]	(2)
newcrc[1] = d[6] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[6]	(3)
newcrc[2] = d[6] ^ d[2] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[2] ^ c[6]	(4)
newcrc[3] = d[7] ^ d[3] ^ d[2] ^ d[1] ^ c[1] ^ c[2] ^ c[3] ^ c[7]	(5)
newcrc[4] = d[4] ^ d[3] ^ d[2] ^ c[2] ^ c[3] ^ c[4]	(6)
newcrc[5] = d[5] ^ d[4] ^ d[3] ^ c[3] ^ c[4] ^ c[5]	(7)
newcrc[6] = d[6] ^ d[5] ^ d[4] ^ c[4] ^ c[5] ^ c[6]	(8)
newcrc[7] = d[7] ^ d[6] ^ d[5] ^ c[5] ^ c[6] ^ c[7]	(9)

The following examples show calculated CRC byte based off various input data:

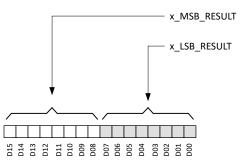
I2C Data 00h : CRC = F3h

I2C Data FFh : CRC = 00h

I2C Data 80h : CRC = 7Ah

I2C Data 4Ch : CRC = 10h

I2C Data E0h : CRC = 5Dh


I2C Data 0000000h : CRC = D1h

I2C Data FFFFFFFh : CRC = 0Fh

7.5.2 Data Definition

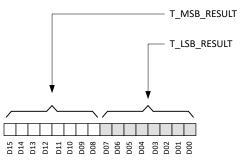
7.5.2.1 Magnetic Sensor Data

The X, Y, and Z magnetic sensor data are stored in x_MSB_RESULT and x_LSB_RESULT registers. \boxtimes 7-15 shows that each sensor output stored in a 16-bit 2's complement format in two 8-bit registers. The data can be retrieved as 16-bit format combining both MSB and LSB registers, or as 8-bit format through the MSB register.

图 7-15. Magnetic Sensor Data Definition

The measured magnetic field can be calculated using 方程式 10 for 16-bit data, and using 方程式 11 for 8-bit data.

$$B = \frac{-(D_{15} \times 2^{15}) + \sum_{i=0}^{14} D_i \times 2^i}{2^{16}} \times 2|B_R|$$
(10)


where

- B is magnetic field in mT.
- D_i is the data bit shown in 图 7-15.
- B_R is the magnetic range in mT for the corresponding channel.

$$B = \frac{-(D_{15} \times 2^7) + \sum_{i=0}^{6} D_{i+8} \times 2^i}{2^8} \times 2|B_R|$$
(11)

7.5.2.2 Temperature Sensor Data

The TMAG5273 will measure temperature from -40 °C to 170 °C. The temperature sensor data are stored in T_MSB_RESULT and T_LSB_RESULT registers. $\boxed{8}$ 7-16 shows the sensor output stored in a 16-bit 2's complement format in two 8-bit registers. The data can be retrieved as 16-bit format combining both MSB and LSB registers, or as 8-bit format through the MSB register.

The measured temperature in degree Celsius can be calculated using 方程式 12 for 16-bit data, and using 方程 式 13 for 8-bit data.

$$T = T_{SENS_T0} + \frac{T_{ADC_T} - T_{ADC_T0}}{T_{ADC_RES}}$$
(12)

where

- T is the measured temperature in degree Celsius.
- T_{SENS T0} as listed in the *Electrical Characteristics* table.
- T_{ADC RES} is the change in ADC code per degree Celsius.
- T_{ADC T0} as listed in the *Electrical Characteristics* table.
- T_{ADC_T} is the measured ADC code for temperature T.

$$T = T_{SENS_T0} + \frac{256 \times \left(T_{ADC_T} - \frac{T_{ADC_T0}}{256}\right)}{T_{ADC_RES}}$$
(13)

7.5.2.3 Angle and Magnitude Data Definition

The TMAG5273 calculates the angle from a pair of magnetic axes based off the ANGLE_EN register bits setting. 图 7-17 shows the angle information stored in the ANGLE_RESULT_MSB and ANGLE_RESULT_LSB registers. Bits D04-D12 store angle integer value from 0 to 360 degree. Bits D00-D03 store fractional angle value. The 3-MSB bits are always populated as b000. The angle can be calculated using 方程式 14.

$$A = \sum_{i=4}^{12} D_i \times 2^{i-4} + \frac{\sum_{i=0}^{3} D_i \times 2^i}{16}$$
(14)

where

- A is the angle measured in degree.
- D_i is the data bit as shown in \mathbb{X} 7-17.

For example: a 354.50 degree is populated as 0001 0110 0010 1000b and a 17.25 degree is populated as 000 0001 0001 0100b.

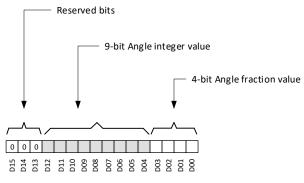
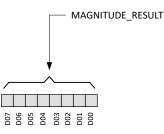


图 7-17. Angle Data Definition

During the angle calculation, use 5程式 15 to calculate the resultant vector magnitude.


$$M = \sqrt{MADC_{Ch1}^2 + MADC_{Ch2}^2} \tag{15}$$

where

• MADC_{Ch1}, MADC_{Ch2} are the ADC codes of the two magnetic channels selected for the angle calculation.

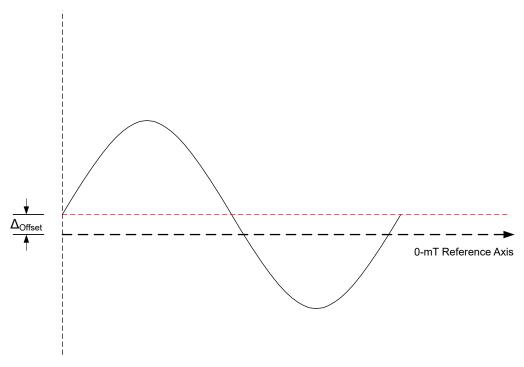

图 7-18 shows the magnitude value stored in the MAGNITUDE_RESULT register. For on-axis angular measurement the magnitude value should remain constant across the full 360° measurement.

图 7-18. Magnitude Result Data Definition

7.5.2.4 Magnetic Sensor Offset Correction

The TMAG5273 enables offset correction for a pair of magnetic axes (see 8 7-19). The MAG_OFFSET_CONFIG_1 and MAG_OFFSET_CONFIG_2 registers store the offset values to be corrected in 2's complement data format. As an example, if the uncorrected waveform for a particular axis has a value that is +2 mT too high, the offset correction value of -2 mT should be entered in the corresponding offset correction register. The selection and order of the sensors are defined in the ANGLE_EN register bits setting. The default value of these offset correction registers are set as zero.

图 7-19. Magnetic Sensor Data Offset Correction

The amount of offset for each axis can be calculated using 方程式 16. As an example, with a ±40mT range, MAG_OFFSET_CONFIG_1 set at 1000 0000b, and MAG_OFFSET_CONFIG_2 set at 0001 0000b, the offset correction for the first axis is -2.5mT and second axis is 0.312mT.

$$\Delta_{Offset} = \frac{-(D_7 \times 2^7) + \sum_{i=0}^{6} D_i \times 2^i}{2^{12}} \times 2|B_R|$$
(16)

where

A Offset is the amount of offset correction to be applied in mT.

- D_i is the data bit in the MAG_OFFSET_CONFIG_1 or MAG_OFFSET_CONFIG_2 register.
- B_R is the magnetic range in mT for the corresponding channel.

Alternately values for MAG_OFFSET_CONFIG_1 or MAG_OFFSET_CONFIG_2 can be calculated for a target offset correction using 方程式 17.

$$MAG_OFFSET = \frac{2^{12} \times \Delta_{Offset}}{2|B_R|}$$
(17)

where

- MAG_OFFSET is the decimal value to be entered in the MAG_OFFSET_CONFIG_1 or MAG_OFFSET_CONFIG_2 register.
- Δ_{Offset} is the amount of offset correction to be applied in mT.
- B_R is the magnetic range in mT for the corresponding channel.

7.6 Register Map

7.6.1 TMAG5273 Registers

7-6 lists the TMAG5273 registers. All register offset addresses not listed in **7**-6 should be considered as reserved locations and the register contents should not be modified.

User Configuration Registers

表 7-6. TMAG5273 Registers

Offset	Acronym	Register Name	Section
0h	DEVICE_CONFIG_1	Configure Device Operation Modes	Go
1h	DEVICE_CONFIG_2	Configure Device Operation Modes	Go
2h	SENSOR_CONFIG_1	Sensor Device Operation Modes	Go
3h	SENSOR_CONFIG_2	Sensor Device Operation Modes	Go
4h	X_THR_CONFIG	X Threshold Configuration	Go
5h	Y_THR_CONFIG	Y Threshold Configuration	Go
6h	Z_THR_CONFIG	Z Threshold Configuration	Go
7h	T_CONFIG	Temp Sensor Configuration	Go
8h	INT_CONFIG_1	Configure Device Operation Modes	Go
9h	MAG_GAIN_CONFIG	Configure Device Operation Modes	Go
Ah	MAG_OFFSET_CONFIG_1	Configure Device Operation Modes	Go
Bh	MAG_OFFSET_CONFIG_2	Configure Device Operation Modes	Go
Ch	I2C_ADDRESS	I2C Address Register	Go
Dh	DEVICE_ID	ID for the device die	Go
Eh	MANUFACTURER_ID_LSB	Manufacturer ID lower byte	Go
Fh	MANUFACTURER_ID_MSB	Manufacturer ID upper byte	Go
10h	T_MSB_RESULT	Conversion Result Register	Go
11h	T_LSB_RESULT	Conversion Result Register	Go
12h	X_MSB_RESULT	Conversion Result Register	Go
13h	X_LSB_RESULT	Conversion Result Register	Go
14h	Y_MSB_RESULT	Conversion Result Register	Go
15h	Y_LSB_RESULT	Conversion Result Register	Go
16h	Z_MSB_RESULT	Conversion Result Register	Go
17h	Z_LSB_RESULT	Conversion Result Register	Go
18h	CONV_STATUS	Conversion Status Register	Go
19h	ANGLE_RESULT_MSB	Conversion Result Register	Go

表 7-6. TMAG5273 Registers (continued)						
Offset	Acronym	Register Name	Section			
1Ah	ANGLE_RESULT_LSB	Conversion Result Register	Go			
1Bh	MAGNITUDE_RESULT	Conversion Result Register	Go			
1Ch	DEVICE_STATUS	Device_Diag Status Register	Go			

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 7-7 shows the codes that are used for access types in this section.

Access Type	农 /-/. Code	Description				
Read Type						
R	R	Read				
Write Type	Write Type					
W	W	Write				
W1CP	W 1C P	Write 1 to clear Requires privileged access				
Reset or Default Value						
- n		Value after reset or the default value				

表 7-7. TMAG5273 Access Type Codes

7.6.1.1 DEVICE_CONFIG_1 Register (Offset = 0h) [Reset = 0h]

DEVICE_CONFIG_1 is shown in 表 7-8.

Return to the Summary Table.

表 7-8. DEVICE_CONFIG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	CRC_EN	R/W	Oh	Enables I2C CRC byte to be sent 0h = CRC disabled 1h = CRC enabled
6-5	MAG_TEMPCO	R/W	0h	Temperature coefficient of the magnet 0h = 0% (No temperature compensation) 1h = 0.12%/ deg C (NdBFe) 2h = Reserved 3h = 0.2%/deg C (Ceramic)
4-2	CONV_AVG	R/W	0h	Enables additional sampling of the sensor data to reduce the noise effect (or to increase resolution) 0h = 1x average, 10.0-kSPS (3-axes) or 20-kSPS (1 axis) 1h = 2x average, 5.7-kSPS (3-axes) or 13.3-kSPS (1 axis) 2h = 4x average, 3.1-kSPS (3-axes) or 8.0-kSPS (1 axis) 3h = 8x average, 1.6-kSPS (3-axes) or 4.4-kSPS (1 axis) 4h = 16x average, 0.8-kSPS (3-axes) or 2.4-kSPS (1 axis) 5h = 32x average, 0.4-kSPS (3-axes) or 1.2-kSPS (1 axis)
1-0	I2C_RD	R/W	Oh	Defines the I2C read mode Oh = Standard I2C 3-byte read command 1h = 1-byte I2C read command for 16bit sensor data and conversion status 2h = 1-byte I2C read command for 8 bit sensor MSB data and conversion status 3h = Reserved

7.6.1.2 DEVICE_CONFIG_2 Register (Offset = 1h) [Reset = 0h]

DEVICE_CONFIG_2 is shown in 表 7-9.

Return to the Summary Table.

表 7-9. DEVICE_CONFIG_2 Register Field Descriptions					
Bit	Field	Туре	Reset	Description	
7-5	THR_HYST	R/W	Oh	Select thresholds for the interrupt function Oh = Takes the 2's complement value of each x_THR_CONFIG register to create a magnetic threshold of the corresponding axis 1h = Takes the 7 LSB bits of the x_THR_CONFIG register to create two opposite magnetic thresholds (one north, and another south) of equal magnitude. 2h = Reserved 3h = Reserved 4h = Reserved 5h = Reserved 6h = Reserved 7h = Reserved	
4	LP_LN	R/W	Oh	Selects the modes between low active current or low-noise modes 0h = Low active current mode 1h = Low noise mode	
3	I2C_GLITCH_FILTER	R/W	Oh	I2C glitch filter 0h = Glitch filter on 1h = Glitch filter off	
2	TRIGGER_MODE	R/W	0h	Selects a condition which initiates a single conversion based off already configured registers. A running conversion completes before executing a trigger. Redundant triggers are ignored. TRIGGER_MODE is available only during the mode explicitly mentioned in OPERATING_MODE. 0h = Conversion Start at I2C Command Bits, DEFAULT 1h = Conversion starts through trigger signal at INT pin	
1-0	OPERATING_MODE	R/W	Oh	Selects Operating Mode and updates value based on operating mode if device transitions from Wake-up and sleep mode to Standby mode. 0h = Stand-by mode (starts new conversion at trigger event) 1h = Sleep mode 2h = Continuous measure mode 3h = Wake-up and sleep mode (W&S mode)	

表 7-9. DEVICE_CONFIG_2 Register Field Descriptions

7.6.1.3 SENSOR_CONFIG_1 Register (Offset = 2h) [Reset = 0h]

SENSOR_CONFIG_1 is shown in 表 7-10.

Return to the Summary Table.

表 7-10. SENSOR_CONFIG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	MAG_CH_EN	R/W	0h	Enables data acquisition of the magnetic axis channel(s) 0h = All magnetic channels of off, DEFAULT 1h = X channel enabled 2h = Y channel enabled 3h = X, Y channel enabled 4h = Z channel enabled 5h = Z, X channel enabled 6h = Y, Z channel enabled 7h = X, Y, Z channel enabled 8h = XYX channel enabled 9h = YXY channel enabled Ah = YZY channel enabled Bh = XZX channel enabled Ch = Reserved Dh = Reserved Fh = Reserved

表 7-10. SENSOR_CONFIG_1 Register Field Descriptions ((continued)
---	-------------

Bit	Field	Туре	Reset	Description
3-0	SLEEPTIME	R/W	Oh	Selects the time spent in low power mode between conversions when OPERATING_MODE =11b 0h = 1ms 1h = 5ms 2h = 10ms 3h = 15ms 4h = 20ms 5h = 30ms 6h = 50ms 7h = 100ms 8h = 500ms 9h = 1000ms Ah = 2000ms Bh = 5000ms Ch = 20000ms

7.6.1.4 SENSOR_CONFIG_2 Register (Offset = 3h) [Reset = 0h]

SENSOR_CONFIG_2 is shown in 表 7-11.

Return to the Summary Table.

表 7-11. SENSOR_CONFIG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0h	Reserved
6	THRX_COUNT	R/W	Oh	Number of threshold crossings before the interrupt is asserted 0h = 1 threshold crossing 1h = 4 threshold crossing
5	MAG_THR_DIR	R/W	0h	Selects the direction of threshold check. This bit is ignored when THR_HYST > 001b Oh = sets interrupt for field above the threshold 1h = sets interrupt for field below the threshold
4	MAG_GAIN_CH	R/W	Oh	Selects the axis for magnitude gain correction value entered in MAG_GAIN_CONFIG register 0h = 1st channel is selected for gain adjustment 1h = 2nd channel is selected for gain adjustment
3-2	ANGLE_EN	R/W	Oh	Enables angle calculation, magnetic gain, and offset corrections between two selected magnetic channels 0h = No angle calculation, magnitude gain, and offset correction enabled 1h = X 1st, Y 2nd 2h = Y 1st, Z 2nd 3h = X 1st, Z 2nd
1	X_Y_RANGE	R/W	Oh	Select the X and Y axes magnetic range from 2 different options. 0h = ±40mT (TMAG5273A1) or ±133mT (TMAG5273A2), DEFAULT 1h = ±80mT (TMAG5273A1) or ±266mT (TMAG5273A2)
0	Z_RANGE	R/W	Oh	Select the Z axis magnetic range from 2 different options. $0h = \pm 40mT$ (TMAG5273A1) or $\pm 133mT$ (TMAG5273A2), DEFAULT $1h = \pm 80mT$ (TMAG5273A1) or $\pm 266mT$ (TMAG5273A2)

7.6.1.5 X_THR_CONFIG Register (Offset = 4h) [Reset = 0h]

X_THR_CONFIG is shown in 表 7-12.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description			
7-0	X_THR_CONFIG	R/W	0h	8-bit, 2's complement X axis threshold code for limit check. The range of possible threshold entrees can be +/-128. The threshold value in mT is calculated for A1 as (40(1+X_Y_RANGE)/ 128)*X_THR_CONFIG, for A2 as (133(1+X_Y_RANGE)/ 128)*X_THR_CONFIG. Default 0h means no threshold comparison.			

表 7-12. X_THR_CONFIG Register Field Descriptions

7.6.1.6 Y_THR_CONFIG Register (Offset = 5h) [Reset = 0h]

Y_THR_CONFIG is shown in 表 7-13.

Return to the Summary Table.

表 7-13. Y_THR_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Y_THR_CONFIG	R/W	0h	8-bit, 2's complement Y axis threshold code for limit check. The range of possible threshold entrees can be +/-128. The threshold value in mT is calculated for A1 as (40(1+X_Y_RANGE)/ 128)*X_THR_CONFIG, for A2 as (133(1+X_Y_RANGE)/ 128)*X_THR_CONFIG. Default 0h means no threshold comparison.

7.6.1.7 Z_THR_CONFIG Register (Offset = 6h) [Reset = 0h]

Z_THR_CONFIG is shown in 表 7-14.

Return to the Summary Table.

表 7-14. Z_THR_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Z_THR_CONFIG	R/W		8-bit, 2's complement Z axis threshold code for limit check. The range of possible threshold entrees can be +/-128. The threshold value in mT is calculated for A1 as (40(1+Z_RANGE)/ 128)*Z_THR_CONFIG, for A2 as (133(1+Z_RANGE)/ 128)*Z_THR_CONFIG. Default 0h means no threshold comparison.

7.6.1.8 T_CONFIG Register (Offset = 7h) [Reset = 0h]

T_CONFIG is shown in 表 7-15.

Return to the Summary Table.

表 7-15. T_CONFIG Register Field Descriptions

_							
	Bit	Field	Туре	Reset	Description		
	7-1	T_THR_CONFIG	R/W	0h	Temperature threshold code entered by user. The valid temperature threshold ranges are -41C to 170C with the threshold codes for -41C = 1Ah, and 170C = 34h. Resolution is 8 degree C/ LSB. Default 0h means no threshold comparison.		
	0	T_CH_EN	R/W	0h	Enables data acquisition of the temperature channel 0h = Temp channel disabled 1h = Temp channel enabled		

7.6.1.9 INT_CONFIG_1 Register (Offset = 8h) [Reset = 0h]

INT_CONFIG_1 is shown in 表 7-16.

Return to the Summary Table.

Bit	Field	Туре	Reset	Description
7	RSLT_INT	R/W	Oh	Enable interrupt response on conversion complete. Oh = Interrupt is not asserted when the configured set of conversions are complete 1h = Interrupt is asserted when the configured set of conversions are complete
6	THRSLD_INT	R/W	0h	Enable interrupt response on a predefined threshold cross. Oh = Interrupt is not asserted when a threshold is crossed 1h = Interrupt is asserted when a threshold is crossed
5	INT_STATE	R/W	Oh	INT interrupt latched or pulsed. 0h = INT interrupt latched until clear by a primary addressing the device 1h = INT interrupt pulse for 10us
4-2	INT_MODE	R/W	0h	Interrupt mode select. Oh = No interrupt 1h = Interrupt through INT 2h = Interrupt through INT except when I2C bus is busy. 3h = Interrupt through SCL 4h = Interrupt through SCL except when I2C bus is busy. 5h = Reserved 6h = Reserved 7h = Reserved
1	RESERVED	R	0h	Reserved
0	MASK_INTB	R/W	0h	Mask INT pin when INT connected to GND 0h = INT pin is enabled 1h = INT pin is disabled (for wake-up and trigger functions)

表 7-16. INT_CONFIG_1 Register Field Descriptions

7.6.1.10 MAG_GAIN_CONFIG Register (Offset = 9h) [Reset = 0h]

MAG_GAIN_CONFIG is shown in 表 7-17.

Return to the Summary Table.

表 7-17. MAG_GAIN_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GAIN_VALUE	R/W		8-bit gain value determined by a primary to adjust a Hall axis gain. The particular axis is selected based off the settings of MAG_GAIN_CH and ANGLE_EN register bits. The binary 8-bit input is interpreted as a fractional value in between 0 and 1 based off the formula, 'user entered value in decimal/256'. Gain value of 0 is interpreted by the device as 1.

7.6.1.11 MAG_OFFSET_CONFIG_1 Register (Offset = Ah) [Reset = 0h]

MAG_OFFSET_CONFIG_1 is shown in 表 7-18.

Return to the Summary Table.

表 7-18. MAG_OFFSET_CONFIG_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OFFSET_VALUE_1ST	R/W		8-bit, 2's complement offset value determined by a primary to adjust first axis offset value. The range of possible offset valid entrees can be +/-128. The offset value is calculated by multiplying bit resolution with the entered value.

7.6.1.12 MAG_OFFSET_CONFIG_2 Register (Offset = Bh) [Reset = 0h]

MAG_OFFSET_CONFIG_2 is shown in 表 7-19.

Return to the Summary Table.

表 7-19. MAG_OFFSET_CONFIG_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OFFSET_VALUE_2ND	R/W		8-bit, 2's complement offset value determined by a primary to adjust second axis offset value. The range of possible offset valid entrees can be +/-128. The offset value is calculated by multiplying bit resolution with the entered value.

7.6.1.13 I2C_ADDRESS Register (Offset = Ch) [Reset = 6Ah]

I2C_ADDRESS is shown in 表 7-20.

Return to the Summary Table.

表 7-20. I2C_ADDRESS Register Field Descriptions

-							
	Bit	Field	Туре	Reset	Description		
	7-1	I2C_ADDRESS	R/W	35h	7-bit default factory I2C address is loaded from OTP during first power up. Change these bits to a new setting if a new I2C address is required (at each power cycle these bits must be written again to avoid going back to default factory address).		
	0	I2C_ADDRESS_UPDATE _EN	R/W	0h	Enable a new user defined I2C address. 0h = Disable update of I2C address 1h = Enable update of I2C address with bits (7:1)		

7.6.1.14 DEVICE_ID Register (Offset = Dh) [Reset = 1h]

DEVICE_ID is shown in 表 7-21.

Return to the Summary Table.

表 7-21. DEVICE_ID Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	RESERVED	R	0h	Reserved
1-0	VER	R	1h	Device version indicator. Reset value of DEVICE_ID depends on the orderable part number. 0h = Reserved 1h = ±40-mT and ±80-mT range 2h = ±133-mT and ±266-mT range 3h = Reserved

7.6.1.15 MANUFACTURER_ID_LSB Register (Offset = Eh) [Reset = 49h]

MANUFACTURER_ID_LSB is shown in 表 7-22.

Return to the Summary Table.

表 7-22. MANUFACTURER_ID_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MANUFACTURER_ID_[7: 0]	R	49h	8-bit unique manufacturer ID

7.6.1.16 MANUFACTURER_ID_MSB Register (Offset = Fh) [Reset = 54h]

MANUFACTURER_ID_MSB is shown in 表 7-23.

Return to the Summary Table.

Copyright © 2021 Texas Instruments Incorporated

表 7-23. MANUFACTURER_ID_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MANUFACTURER_ID_[15 :8]	R	54h	8-bit unique manufacturer ID

7.6.1.17 T_MSB_RESULT Register (Offset = 10h) [Reset = 0h]

T_MSB_RESULT is shown in 表 7-24.

Return to the Summary Table.

表 7-24. T_MSB_RESULT Register Field Descriptions

_		•••			
	Bit	Field	Туре	Reset	Description
	7-0	T_CH_RESULT [15:8]	R	0h	T-channel data conversion results, MSB 8 bits.

7.6.1.18 T_LSB_RESULT Register (Offset = 11h) [Reset = 0h]

T_LSB_RESULT is shown in 表 7-25.

Return to the Summary Table.

表 7-25. T_LSB_RESULT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	T_CH_RESULT [7:0]	R	0h	T-channel data conversion results, LSB 8 bits.

7.6.1.19 X_MSB_RESULT Register (Offset = 12h) [Reset = 0h]

X_MSB_RESULT is shown in 表 7-26.

Return to the Summary Table.

表 7-26. X_MSB_RESULT Register Field Descriptions

В	Bit	Field	Туре	Reset	Description
7-	-0	X_CH_RESULT [15:8]	R	0h	X-channel data conversion results, MSB 8 bits.

7.6.1.20 X_LSB_RESULT Register (Offset = 13h) [Reset = 0h]

X_LSB_RESULT is shown in 表 7-27.

Return to the Summary Table.

表 7-27. X_LSB_RESULT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	X_CH_RESULT [7:0]	R	0h	X-channel data conversion results, LSB 8 bits.

7.6.1.21 Y_MSB_RESULT Register (Offset = 14h) [Reset = 0h]

Y_MSB_RESULT is shown in 表 7-28.

Return to the Summary Table.

表 7-28. Y_MSB_RESULT Register Field Descriptions

 ······································						
Bit	Field	Туре	Reset	Description		
7-0	Y_CH_RESULT [15:8]	R	0h	Y-channel data conversion results, MSB 8 bits.		

7.6.1.22 Y_LSB_RESULT Register (Offset = 15h) [Reset = 0h]

Y_LSB_RESULT is shown in 表 7-29.

Return to the Summary Table.

表 7-29. Y_LSB_RESULT Register F	Field Descriptions
---------------------------------	--------------------

Bit	Field	Туре	Reset	Description
7-0	Y_CH_RESULT [7:0]	R	0h	Y-channel data conversion results, LSB 8 bits.

7.6.1.23 Z_MSB_RESULT Register (Offset = 16h) [Reset = 0h]

Z_MSB_RESULT is shown in 表 7-30.

Return to the Summary Table.

表 7-30. Z MSB RESULT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Z_CH_RESULT [15:8]	R	0h	Z-channel data conversion results, MSB 8 bits.

7.6.1.24 Z_LSB_RESULT Register (Offset = 17h) [Reset = 0h]

Z_LSB_RESULT is shown in 表 7-31.

Return to the Summary Table.

表 7-31. Z_LSB_RESULT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Z_CH_RESULT [7:0]	R	0h	Z-channel data conversion results, LSB 8 bits.

7.6.1.25 CONV_STATUS Register (Offset = 18h) [Reset = 10h]

CONV_STATUS is shown in 表 7-32.

Return to the Summary Table.

表 7-32. CONV_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	SET_COUNT	R	0h	Rolling Count of Conversion Data Sets
4	POR	R/W1CP	1h	Device powered up, or experienced power-on-reset. Bit is clear when host writes back '1'. 0h = No POR 1h = POR occurred
3-2	RESERVED	R	0h	Reserved
1	DIAG_STATUS	R	0h	Detect any internal diagnostics fail which include VCC UV, internal memory CRC error, INT pin error and internal clock error. Ignore this bit status if VCC < 2.3V. 0h = No diag fail 1h = Diag fail detected
0	RESULT_STATUS	R	0h	Conversion data buffer is ready to be read. 0h = Conversion data not complete 1h = Conversion data complete

7.6.1.26 ANGLE_RESULT_MSB Register (Offset = 19h) [Reset = 0h]

ANGLE_RESULT_MSB is shown in 表 7-33.

Copyright © 2021 Texas Instruments Incorporated

TMAG5273 ZHCSLX6A - JUNE 2021 - REVISED SEPTEMBER 2021

Return to the Summary Table.

表 7-33. ANGLE_RESULT_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	ANGLE_RESULT_MSB	R	0h	Angle measurement result in degree. The data is displayed from 0 to 360 degree in 13 LSB bits after combining the ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for fraction of an angle in the format (xxxx/16).

7.6.1.27 ANGLE_RESULT_LSB Register (Offset = 1Ah) [Reset = 0h]

ANGLE_RESULT_LSB is shown in 表 7-34.

Return to the Summary Table.

表 7-34. ANGLE_RESULT_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	ANGLE_RESULT_LSB	R		Angle measurement result in degree. The data is displayed from 0 to 360 degree in 13 LSB bits after combining the ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for fraction of an angle in the format (xxxx/16).

7.6.1.28 MAGNITUDE_RESULT Register (Offset = 1Bh) [Reset = 0h]

MAGNITUDE_RESULT is shown in 表 7-35.

Return to the Summary Table.

表 7-35. MAGNITUDE_RESULT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MAGNITUDE_RESULT	R		Resultant vector magnitude (during angle measurement) result. This value should be constant during 360 degree measurements

7.6.1.29 DEVICE_STATUS Register (Offset = 1Ch) [Reset = 10h]

DEVICE_STATUS is shown in 表 7-36.

Return to the Summary Table.

表 7-36. DEVICE_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	RESERVED	R	0h	Reserved
4	INTB_RB	R	1h	Indicates the level that the device is reading back from INT pin. The reset value of DEVICE_STATUS depends on the status of the INT pin at power-up. 0h = INT pin driven low 1h = INT pin status high
3	OSC_ER	R/W1CP	0h	Indicates if Oscillator error is detected. Bit is clear when host writes back '1'. 0h = No Oscillator error detected 1h = Oscillator error detected
2	INT_ER	R/W1CP	0h	Indicates if INT pin error is detected. Bit is clear when host writes back '1'. 0h = No INT error detected 1h = INT error detected

表 7-36. DEVICE_STATUS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
1	OTP_CRC_ER	R/W1CP	0h	Indicates if OTP CRC error is detected. Bit is clear when host writes back '1'. 0h = No OTP CRC error detected 1h = OTP CRC error detected
0	VCC_UV_ER	R/W1CP	0h	Indicates if VCC undervoltage was detected. Bit is clear when host writes back '1'. Ignore this bit status if VCC < 2.3V. 0h = No VCC UV detected 1h = VCC UV detected

8 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

8.1.1 Select the Sensitivity Option

Select the highest TMAG5273 sensitivity option that can measure the required range of magnetic flux density so that the ADC input range is maximized.

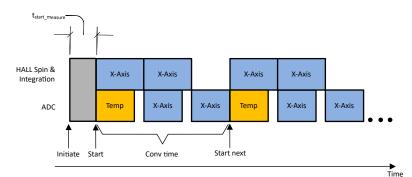
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a magnet. TI created an online tool to help with simple magnet calculations under the TMAG5273 product folder on ti.com.

8.1.2 Temperature Compensation for Magnets

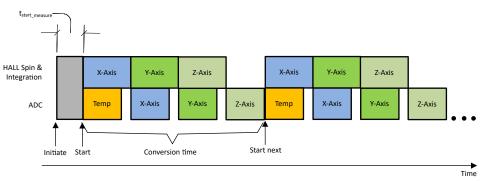
The TMAG5273 temperature compensation is designed to directly compensate the average temperature drift of several magnets as specified in the MAG_TEMPCO register bits. The residual induction (B_r) of a magnet typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite magnets as the temperature increases. Set the MAG_TEMPCO bit to default 00b if the device temperature compensation is not needed.

8.1.3 Sensor Conversion

Multiple conversion schemes can be adopted based off the MAG_CH_EN and CONV_AVG register bits settings.


8.1.3.1 Continuous Conversion

The TMAG5273 can be set in continuous conversion mode when OPERATING_MODE is set to 10b. 🕅 8-1 shows few examples of continuous conversion. The input magnetic field is processed in two steps. In the first step the device spins the hall sensor elements, and integrates the sampled data. In the second step the ADC block converts the analog signal into digital bits and stores in the corresponding result register. While the ADC starts processing the first magnetic sample, the spin block can start processing another magnetic sample. In this mode the temperature data is taken at the beginning of each new conversion. This temperature data is used to compensate for the magnetic thermal drift.



OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 000b

OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 001b

OPERATING_MODE = 10b, MAG_CH_EN = 0111b, CONV_AVG = 000b

图 8-1. Continuous Conversion Examples

8.1.3.2 Trigger Conversion

The TMAG5273 supports trigger conversion with OPERATING_MODE set to 00b. The trigger event can be initiated through I²C command or \overline{INT} signal. \boxtimes 8-2 shows an example of trigger conversion with temperature, X, Y, and Z sensors activated.

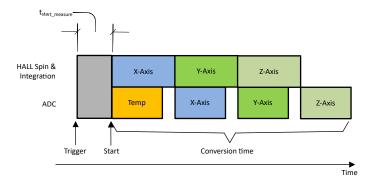
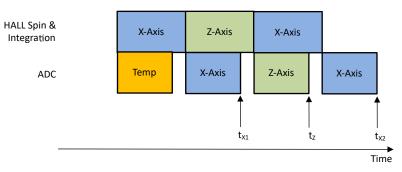


图 8-2. Trigger Conversion for Temperature, X, Y, & Z Sensors

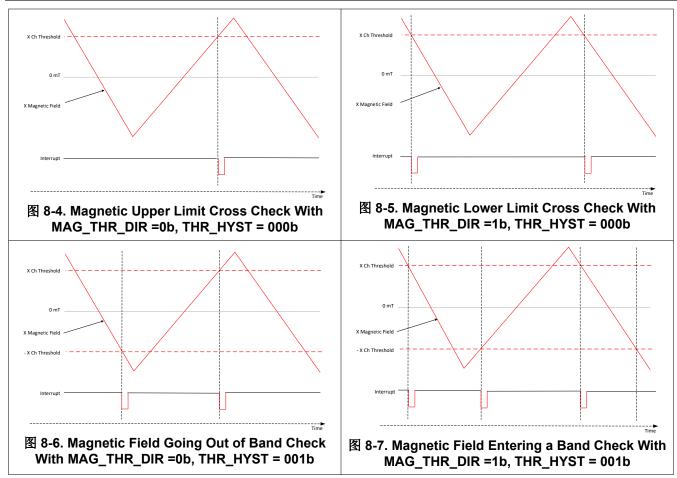

8.1.3.3 Pseudo-Simultaneous Sampling

In absolute angle measurement, application sensor data from multiple axes are required to calculate an accurate angle. The magnetic field data collected at different times through the same signal chain introduces error in angle calculation. The TMAG5273 offers pseudo-simultaneous sampling data collection modes to eliminate this error. 图 8-3 shows an example where MAG_CH_EN is set at 1011b to collect XZX data. 方程式 18 shows that the time stamps for the X and Z sensor data are the same.

$$t_Z = \frac{t_{X1} + t_{X2}}{2} \tag{18}$$

where

• t_{X1} , t_Z , t_{X2} are time stamps for X, Z, X sensor data completion as defined in \mathbb{R} 8-3.


图 8-3. XZX Magnetic Field Conversion

The vertical X, Y sensors of the TMAG5273 exhibit more noise than the horizontal Z sensor. The pseudosimultaneous sampling can be used to equalize the noise floor when two set of vertical sensor data are collected against one set of horizontal sensor data, as in examples of XZX or YZY modes.

8.1.4 Magnetic Limit Check

The TMAG5273 enables magnetic limit checks for single or multiple axes at the same time. A 8-4 to 8 8-7 show examples of magnetic limit cross detection events while the field going above, below, exiting a magnetic band, and entering a magnetic band. The device will keep generating interrupt with each new conversion if the magnetic fields remain in the shaded regions in the figures. The MAG_THR_DIR and THR_HYST register bits help select different limit cross modes.

8.1.5 Error Calculation During Linear Measurement

The TMAG5273 offers independent configurations to perform linear position measurements in X, Y, and Z axes. To calculate the expected error during linear measurement, the contributions from each of the individual error sources must be understood. The relevant error sources include sensitivity error, offset, noise, cross axis sensitivity, hysteresis, nonlinearity, drift across temperature, drift across life time, and so forth. For a 3-axis Hall solution like the TMAG5273, the cross-axis sensitivity and hysteresis error sources are insignificant. Use <math><math>19 to estimate the linear measurement error calculation at room temperature.

$$Error_{LM_{25C}} = \frac{\sqrt{(B \times SENS_{ER})^2 + B_{off}^2 + N_{RMS_{25}}^2}}{B} \times 100\%$$
(19)

where

- Error_{LM_25C} is total error in % during linear measurement at 25°C.
- B is input magnetic field.
- SENS_{ER} is sensitivity error in decimal number at 25°C. As an example, enter 0.05 for sensitivity error of 5%.
- B_{off} is offset error at 25°C.
- N_{RMS 25} is RMS noise at 25°C.

In many applications, system level calibration at room temperature can nullify the offset and sensitivity errors at 25°C. The noise errors can be reduced by internally averaging by up to 32x on the device in addition to the averaging that could be done in the microcontroller. Use <math><math><math>20 to estimate the linear measurement error across temperature after calibration at room temperature.

Copyright © 2021 Texas Instruments Incorporated

TMAG5273 ZHCSLX6A - JUNE 2021 - REVISED SEPTEMBER 2021

$$Error_{LM_Temp} = \frac{\sqrt{\left(B \times SENS_{DR}\right)^2 + B_{off_DR}^2 + N_{RMS_Temp}^2}}{B} \times 100\%$$
(20)

where

- Error_{LM_Temp} is total error in % during linear measurement across temperature after room temperature calibration.
- B is input magnetic field.
- SENS_{DR} is sensitivity drift in decimal number from value at 25°C. As an example, enter 0.05 for sensitivity drift of 5%.
- B_{off DR} is offset drift from value at 25°C.
- N_{RMS Temp} is RMS noise across temperature.

If room temperature calibration is not performed, sensitivity and offset errors at room temperature must also account for total error calculation across temperature (see 方程式 21).

$$Error_{LM_Temp_NCal} = \frac{\sqrt{(B \times SENS_{ER})^2 + (B \times SENS_{DR})^2 + B_{off}^2 + B_{off_DR}^2 + N_{RMS_Temp}^2}}{B} \times 100\%$$
(21)

where

Error_{LM_Temp_NCal} is total error in % during linear measurement across temperature without room temperature calibration.

Note

In this section, error sources such as system mechanical vibration, magnet temperature gradient, earth magnetic field, nonlinearity, lifetime drift, and so forth, are not considered. The user must take these additional error sources into account while calculating overall system error budgets.

8.1.6 Error Calculation During Angular Measurement

The TMAG5273 offers on-chip CORDIC to measure angle data from any of the two magnetic axes. The linear magnetic axis data can be used to calculate the angle using an external CORDIC as well. To calculate the expected error during angular measurement, the contributions from each individual error source must be understood. The relevant error sources include sensitivity error, offset, noise, axis-axis mismatch, nonlinearity, drift across temperature, drift across life time, and so forth. Use the Angle Error Calculation Tool to estimate the total error during angular measurement.

8.2 Typical Application

Magnetic 3D sensors are very popular due to contactless and reliable measurements, especially in applications requiring long-term measurements in rugged environments. The TMAG5273 offers design flexibility in wide range of industrial and personal electronics applications. In this section three common application examples are discussed in details.

8.2.1 Magnetic Tamper Detection

Given their susceptibility to magnetic tampering, electricity meters often include magnetic sensors designed to detect external magnetic fields and take appropriate actions, such as disconnecting services to the electricity meter or applying a penalty fee for tampering. 🕅 8-8 shows that magnetic tampering can result from a permanent magnet in any of the three orientations. Another form of magnetic tampering can be generated through an external coil powered from AC supply mains. The TMAG5273 offers flexible operating modes and configuration of three independent Hall-sensors to detect tampering.

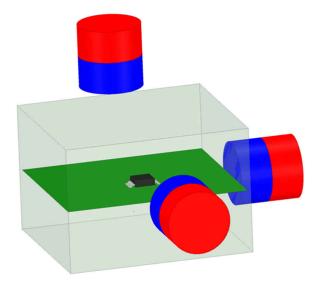
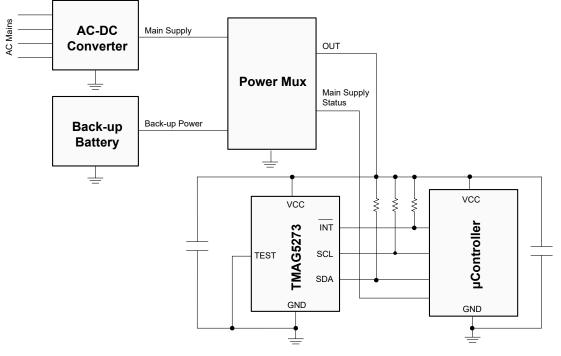



图 8-8. TMAG5273 Magnetic Tamper Detection

8.2.1.1 Design Requirements

Use the parameters listed in $\frac{1}{8}$ 8-3 for this design example.

衣 6-1. Design Parameters							
DESIGN PARAMETERS	OPERATING ON AC SUPPLY	OPERATING ON BACK-UP BATTERY					
Device	TMAG5273-A2	TMAG5273-A2					
VCC	3.3 V	3.6 V to 1.7V					
Operating Mode	Continuous measure mode	Wake-up and sleep mode					

表 8-1. Design Parameters

表 8-1. Design Parameters (continued)							
DESIGN PARAMETERS	OPERATING ON AC SUPPLY	OPERATING ON BACK-UP BATTERY					
Design Objective	Read the raw magnetic data and determine the magnitude and type of tampering (AC or DC magnetic field)	Wake up the microcontroller if magnetic tampering occurs					
Timing Budget to Detect Tampering	<100ms	<5s					
Desired Battery Life	N/A	5 Year					

8.2.1.2 Detailed Design Procedure

Select a power multiplexer that allows powering the system from AC power line as default option. In case of power outage the power multiplexer automatically switches to back-up battery for powering the system. A status signal from, either the AC-DC regulator or the multiplexer, notifies the microcontroller on power outage events. The microcontroller, upon receiving the status signal, configures the TMAG5273 to operate in wake-up and sleep mode. The TMAG5273 will wake up and measure the magnetic field at a prespecified interval. The device repeats the cycle if no tampering happens. In case of tampering the device will exit the wake-up and sleep mode and send interrupt signal to the microcontroller.

Perform the following steps to set the device in continuous measure mode and minimize the number of steps required during battery back-up modes:

- Set the DEVICE_CONFIG_1 register to 1h.
- Set the SENSOR CONFIG 1 register to 79h.
- Set the T_CONFIG register to 1h.
- Set the INT_CONFIG_1 register to A4h.
- Set the DEVICE_CONFIG_2 register to 22h.
- Wait for the INT signal assert low to indicate conversion complete. When INT goes low, perform the 16-bit T, X, Y, Z register read with one single read command (see <a>[8] 8-10).

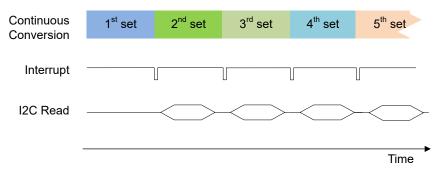


图 8-10. Continuous Conversion With AC Line Power

During power outage event perform only the following steps to set the sensor in the wake-up and sleep mode:

- Set the INT_CONFIG_1 register to 64h.
- Set the DEVICE_CONFIG_2 register to 23h.
- If a threshold detection even occurs, the INT signal asserts low to wake-up the microcontroller. When INT goes low, perform the 16-bit T, X, Y, Z register read with one single read command (see 8 8-11).

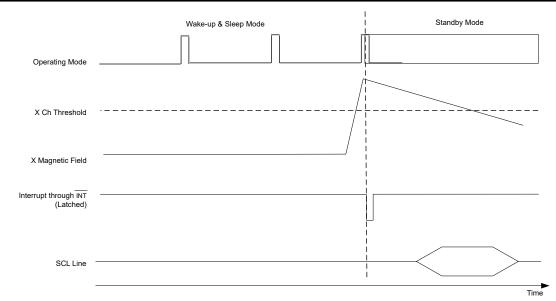
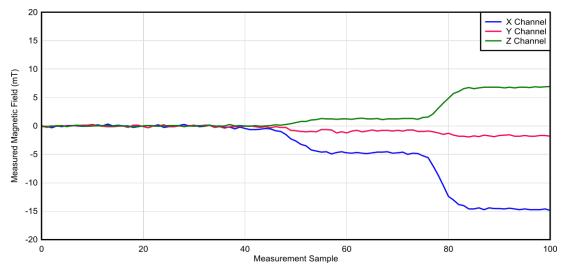
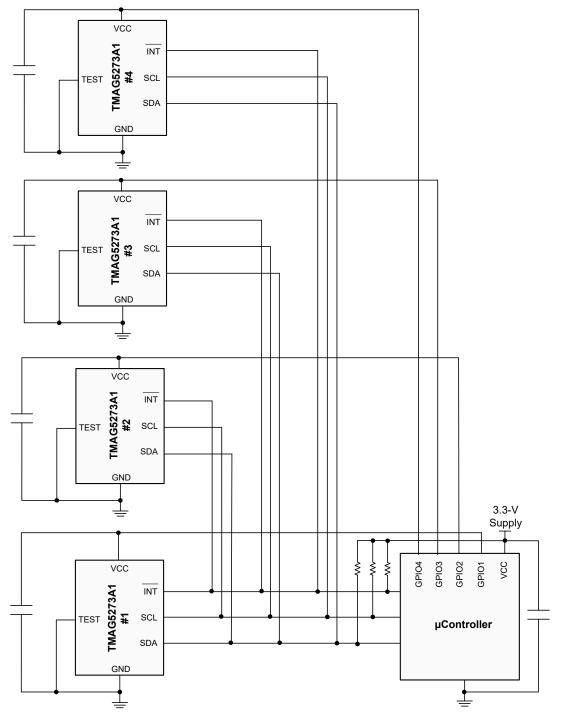



图 8-11. Wake-Up and Sleep Mode Operation With Back-Up Battery



8.2.2 I²C Address Expansion

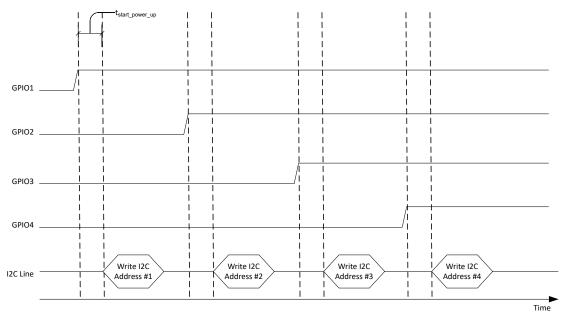
The TMAG5273 is offered in four different factory-programmed I²C addresses. The device also supports additional I²C addresses through the configuration of the I2C_ADDRESS register. There are 7-bits to select 128 different addresses. Take system limitations like bus loading, maximum clock frequency, available GPIOs from a microcontroller, and so forth, in account before selecting maximum number of sensors in a single I²C bus.

8.2.2.1 Design Requirements

Use the parameters listed in $\frac{1}{8}$ 8-3 for this design example.

表 8-2. Design Paramete	rs
------------------------	----

PARAMETERS	DESIGN TARGET
Device orderable	TMAG5273A1
VCC	3.3 V


表 8-2. Design Parameters (continued)							
PARAMETERS	DESIGN TARGET						
# of Devices in same bus	4 (same method can be used to expand the number of sensors in the $\ensuremath{I}^2\ensuremath{C}$ bus)						
Design objective	Optimize the # GPIO and component count						
Current supply per sensor	5-mA, supplied by a microcontroller GPIO						

8.2.2.2 Detailed Design Procedure

Select GPIO with current supply capability of 5-mA. 🛛 8-13 shows that the SCL, SDA lines and INT pin can be shared. However, the function of the INT pin needs to be analyzed when shared by multiple sensors. As an example, if the sensors are configured to generate interrupt through the INT pin, the microcontroller needs to read all the sensors to determine which specific one sending the interrupt. Take the following steps sequentially to assign new I²C addresses to the four TMAG5273 shown in 8 8-14:

- Turn on the GPIO#1 and wait until $t_{start_power_up}$ time is elapsed. •
- Address the device#1 with factory programmed address. Write to the I2C ADDRESS register to assign a new address.
- Turn on the GPIO#2 and wait until t_{start power up} time is elapsed.
- Address the device#2 with factory programmed address. Write to the I2C ADDRESS register to assign a new unique address.
- Turn on the GPIO#3 and wait until t_{start_power_up} time is elapsed.
- Address the device#3 with factory programmed address. Write to the I2C ADDRESS register to assign a new unique address.
- Turn on the GPIO#4 and wait until $t_{start_power_up}$ time is elapsed.
- Address the device#4 with factory programmed address. Write to the I2C_ADDRESS register to assign a new unique address.

Repeat the above steps if there is a power outage or power-up reset condition.

8.2.3 Angle Measurement

Magnetic angle sensors are very popular due to contactless and reliable measurements, especially in applications requiring long-term measurements in rugged environments. The TMAG5273 offers an on-chip angle calculator providing angular measurement based off any two of the magnetic axes. The two axes of interest can

be selected in the ANGLE_EN register bits. The device offers angle output in complete 360 degree scale. Take several error sources into account for angle calculation, including sensitivity error, offset error, linearity error, noise, mechanical vibration, temperature drift, and so forth.

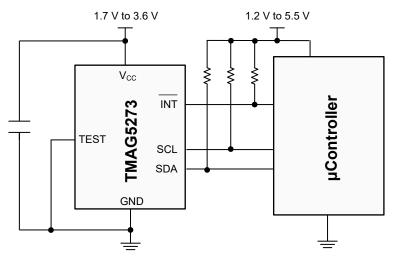


图 8-15. TMAG5273 Application Diagram for Angle Measurement

8.2.3.1 Design Requirements

Use the parameters listed in $\frac{1}{8}$ 8-3 for this design example.

DESIGN PARAMETERS	ON-AXIS MEASUREMENT	OFF-AXIS MEASUREMENT						
Device	TMAG5273-A1	TMAG5273-A1						
VCC	3.3 V	3.3 V						
Device Position	Directly under the magnet	At the adjacent side of the magnet						
Magnet	Cylinder: 4.7625-mm diameter, 12.7-mm thick, neodymium N52, Br = 1480	Cylinder: 4.7625-mm diameter, 12.7-mm thick, neodymium N52, Br = 1480						
Magnetic Range Selection	Select the same range for both axes based off the highest possible magnetic field seen by the sensor	Select the same range for both axes based off the highest possible magnetic field seen by the sensor						
RPM	<600	<600						
Desired Accuracy	<2° for 360° rotation	<2° for 360° rotation						

表 8-3 Design Parameters

8.2.3.2 Detailed Design Procedure

For accurate angle measurement, the two axes amplitudes must be normalized by selecting the proper gain adjustment value in the MAG GAIN CONFIG register. The gain adjustment value is a fractional decimal number between 0 and 1. The following steps must be followed to calculate this fractional value:

- Set the device at 32x average mode and rotate the shaft full 360 degree.
- Record the two axes sensor ADC codes for the full 360 degree rotation.
- A normalized plot for the full 360 degree rotations are represented in 🛽 8-17 or 🖉 8-18.
- Measure the maximum peak-peak ADC code delta for each axis, A_X and A_Y.
- $G_X = \frac{A_Y}{A_X}$ If A_X>A_Y, set the MAG_GAIN_CH register bit to 0b. Calculate the gain adjustment value for X axis: $G_Y = \frac{1}{G_X}$
- If A_X<A_Y, set the MAG_GAIN_CH register bit to 1b. Calculate the gain adjustment value for Y axis:
- The target binary gain setting at the GAIN_VALUE register bits are calculated from the equation, G_X or G_Y = GAIN_VALUE_{decimal}/ 256.

Example 1: If $A_X = A_Y = 60,000$, the GAIN_VALUE register bits are set at default 0000 0000b.

Example 2: If A_X = 60,000, A_Y = 45,000, the G_X = 45,000/60,000 =0.75. Set MAG_GAIN_CH to 0b and GAIN VALUE to 1100 0000b.

Example 3: If A_X = 45,000, A_Y = 60,000, the G_X = (60,000/45,000) =1.33. Since $G_X > 1$, the gain adjustment needs to be applied to Y axis with $G_Y = 1/G_X$. Set MAG_GAIN_CH to 1b and GAIN_VALUE to 1100 0000b.

8.2.3.2.1 Gain Adjustment for Angle Measurement

Common measurement topology include angular position measurements in on-axis or off-axis angular measurements shown in 🛛 8-16. Select the on-axis measurement topology whenever possible as this offers the best optimization of magnetic field and the device measurement ranges. The TMAG5273 offers on-chip gain adjustment option to account for mechanical position misalignments.

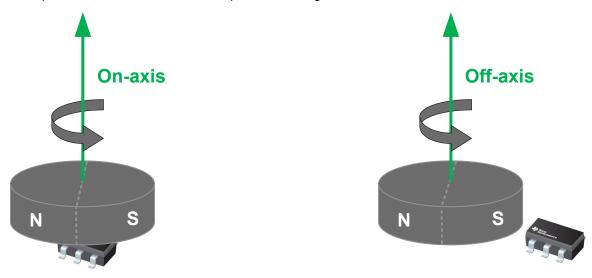
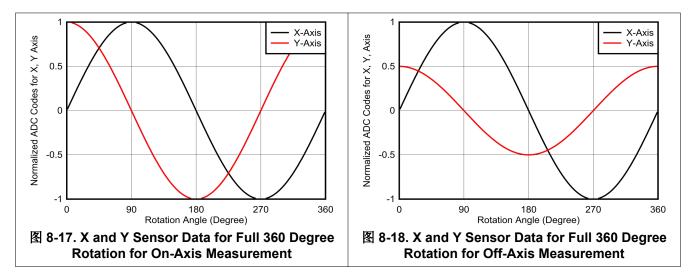



图 8-16. On-Axis vs. Off-Axis Angle Measurements

8.2.3.3 Application Curves

8.3 What to Do and What Not to Do

The TMAG5273 updates the result registers at the end of a conversion. I²C read of the result register needs to be synchronized with the conversion update time to avoid reading a result data while the result register is being

updated. For applications with tight timing budget use the INT signal to notify the primary when a conversion is complete.

9 Power Supply Recommendations

A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor with a value of at least 0.01 µF. Connect the TEST pin to ground.

10 Layout

10.1 Layout Guidelines

Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice. Magnetic fields also easily pass through most printed-circuit boards (PCBs), which makes placing the magnet on the opposite side of the PCB possible.

10.2 Layout Example

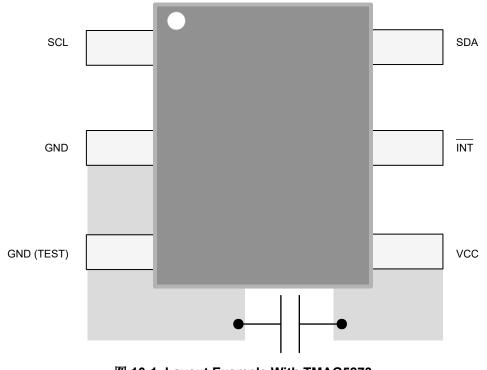


图 10-1. Layout Example With TMAG5273

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, *HALL-ADAPTER-EVM User's Guide* (SLYU043)
- Texas Instruments, TMAG5273 Evaluation Manual user's guide (SLYU058)
- Texas Instruments, *Angle Measurement With Multi-Axis Linear Hall-Effect Sensors* application report (SBAA463)
- Texas Instruments, Absolute Angle Measurements for Rotational Motion Using Hall-Effect Sensors application brief (SBAA503)
- Texas Instruments, *Limit Detection for Tamper and End-of-Travel Detection Using Hall-Effect Sensors* application brief (SBOA514)

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改TI 针对TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		QLY	(2)	(6)	(3)		(4/5)	
TMAG5273A1QDBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	52A1	Samples
TMAG5273A1QDBVT	ACTIVE	SOT-23	DBV	6	250	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	52A1	Samples
TMAG5273A2QDBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	52A2	Samples
TMAG5273A2QDBVT	ACTIVE	SOT-23	DBV	6	250	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	52A2	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

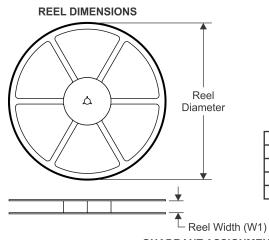
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

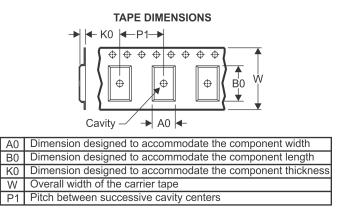
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

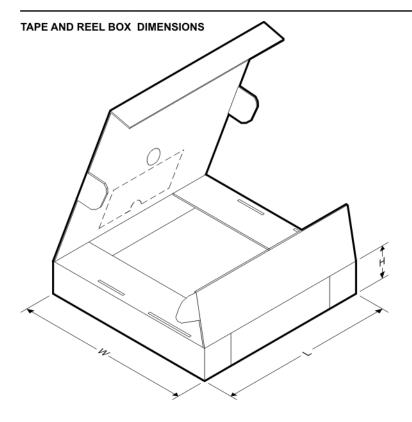

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal Device	1	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMAG5273A1QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273A1QDBVT	SOT-23	DBV	6	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273A2QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273A2QDBVT	SOT-23	DBV	6	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3

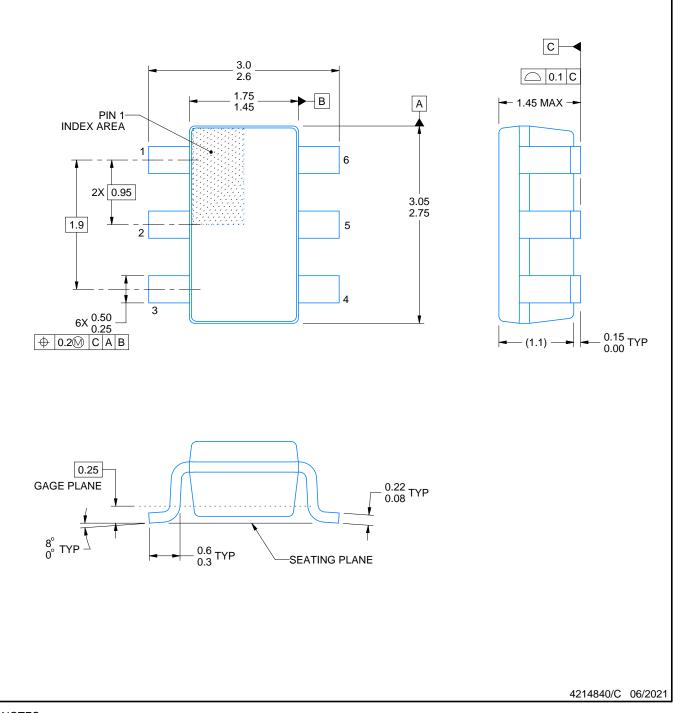
www.ti.com

PACKAGE MATERIALS INFORMATION

1-Oct-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMAG5273A1QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273A1QDBVT	SOT-23	DBV	6	250	190.0	190.0	30.0
TMAG5273A2QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273A2QDBVT	SOT-23	DBV	6	250	190.0	190.0	30.0


DBV0006A

PACKAGE OUTLINE

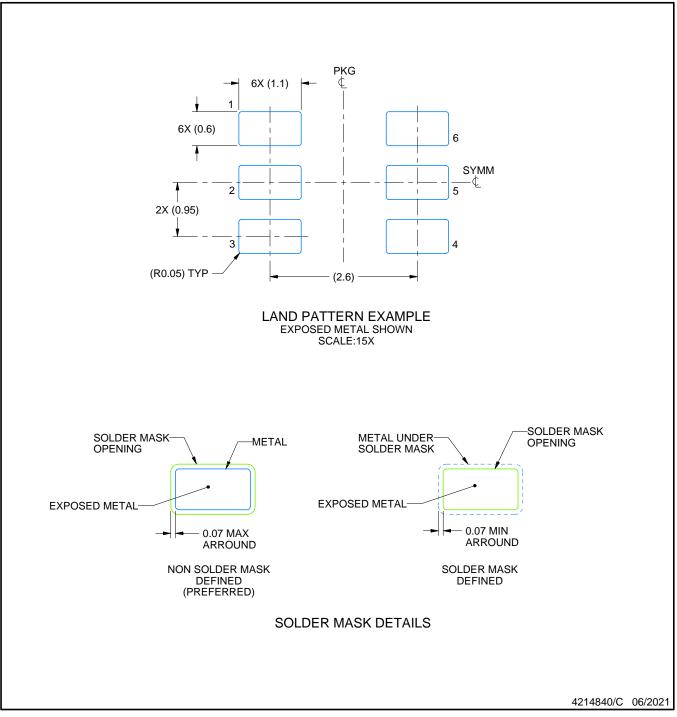
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

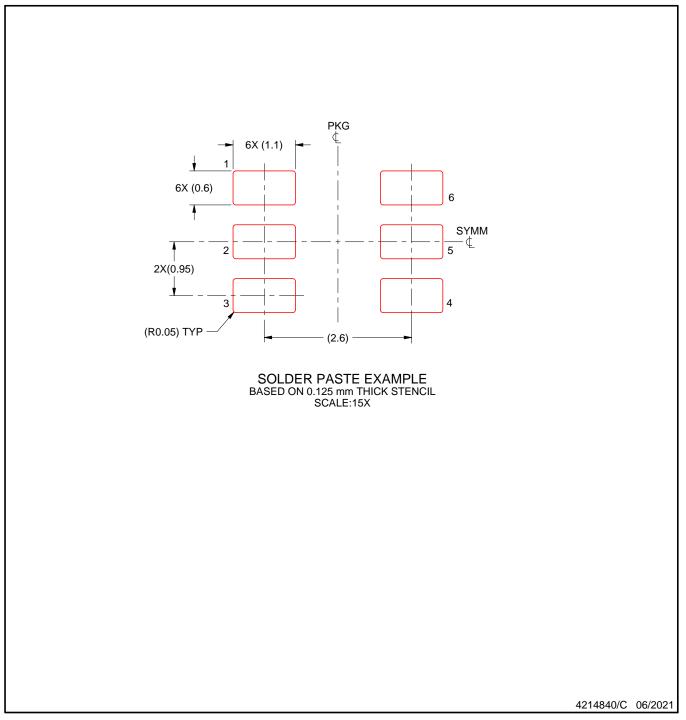
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司